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Abstract. We explore various methods to implement (very) light weight
concurrency in OCaml, in both direct and indirect style. We try in par-
ticular to examine the relations between all these various schemes. Three
simple example applications allow us to examine both the coding styles and
the performances. The cost of context switching, thread creation and the
memory footprint of a thread are compared. All implementations are much
better than system and VM threads, but the “trampoline” scheme seems to
be the best both at CPU and memory requirements.

1 Introduction

Concurrency is a property of systems in which several computations are executing
“simultaneously”, and potentially interacting with each other. Concurrency doesn’t
imply that some hardware parallelism be available but just that the computations
(that we’ll call “threads” in this text) are “in progress” at the same time, and will
evolve independently. Of course, threads also need to synchronize and exchange
data.

OCaml[15] is a functional language of the ML family. It has support for both
imperative and object paradigms and can be compiled to native code or bytecode
executed by a virtual machine. Its standard library includes a Thread module that
provides concurrent execution of threads using either the operating system support
for threads or support from the virtual machine (this last choice being available
only for bytecode executables).

Besides making potentially easier the exploitation of hardware parallelism,1

threads allow overlapping I/O and computation (while a thread is blocked on an
I/O operation, other threads may proceed) and support a concurrent programming
style. Many applications can be expressed more cleanly with concurrency.

Operating systems provide concurrency by time sharing of the CPU between
different processes or threads. Scheduling of such threads is preemptive, i.e. the
system decides when to suspend a thread to allow another to run. This operation,
called a context switch, is relatively costly[16]. Since threads can be switched at any
time, synchronisation tools such as locks must generally be used to define atomic
operations. Locks are low level objects with ugly properties such as breaking com-
positionnality [22]. The same applies for OCaml VM threads.

Threads can also be implemented in user-space without support from the oper-
ating system. Either the language runtime [1] or a library [7, 6] arranges to schedule
several “threads” running in a single system thread. In such a setting, scheduling
is generally cooperative: threads decide themselves when to suspend to let others

1 Which OCaml threads currently mostly can’t: only one running thread can access the
heap. OCaml for MultiCore [3] is an unofficial project to remove this limitation.



execute. Care must be taken in handling I/O since if one such thread blocks waiting
for an I/O operation to finish the whole set of threads is blocked. The solution is to
use only non blocking I/O operations and switch to another thread if the operation
fails. This approach:

– removes the need for most locks (since context switches can only occur at pre-
defined places, race conditions can (more) easily be avoided),

– allows systems with very large numbers of potentially tightly coupled threads
(since they can be very light weight both in terms of memory footprint per
thread and computation time per context switch),

– can be used to give the application control on the scheduling policy [17].

On the other hand the programmer has to ensure that threads do indeed yield
regularly.

In this paper we study several ways to implement very light weight cooperative
threads in a functional language such as OCaml without any addition to the lan-
guage. We first describe our concurrency model in Section 2. Three simple example
applications making heavy use of concurrency are then presented in Section 3. The
various implementations are described in Sections 4 and 5. Performance compar-
isons based on the example applications are given in Section 6. The paper closes
with a conclusion and perspectives (Section 7).

2 Concurrency Model

We define our concurrency model with a set of primitive operations for running
threads allowing communication and synchronization. We first define here infor-
mally these operations as their signatures will depend on each implementation.

2.1 Basic Operations

We define the following basic operations for running threads:

spawn takes a thunk and creates a new thread for executing it. The thread will
actually start running only when the start operation is invoked.

yield suspends the calling thread, allowing other threads to execute.
halt terminates the calling thread. If the last thread terminates, start returns.
start starts all the threads created by spawn, and waits.
stop terminates all the threads. start returns, that is, control returns after the call

to start .

Most systems providing threads do not include something like the start opera-
tion: threads start running as soon as they are spawned. In our model, the calling
(“main”) code is not one of the threads but is suspended until all the threads have
completed. It is then easy to spawn a set of threads to handle a specific task and
resume to sequential operations when they are done. However, this choice has little
impact on most of what we say in the following.

2.2 Communication

We allow threads to communicate through MVars and synchronous Fifos. Intro-
duced in Haskell [20], MVars are shared mutable variables that provide synchro-
nization. They can also be thought as one-cell synchronous channels. An MVar can
contain a value or be empty. A tentative writer blocks if the MVar already contains
a value, otherwise it writes the value and continues. A tentative reader blocks if it
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is empty, otherwise it takes (removes) the value and continues. Of course blocked
readers or writers should be waken up when the MVar is written to or emptied.

We define α mvar as the type of MVars storing a value of type α. The following
operations are defined:

make mvar creates a fresh empty MVar.
put mvar puts a value into the MVar.
take mvar takes the value out of the MVar.

In the following we assume that only one thread wants to write and only one
wants to read in a given MVar. This is not a necessary restriction, but does simplify
the implementations a bit.

Contrary to an MVar, a synchronous Fifo can store an unlimited amount of
values. Adding a value to the Fifo is a non blocking operation while taking one (the
one at the head of queue) is blocking if the queue is empty. Operations are similar
to MVar’s:

make fifo creates a fresh empty Fifo.
put fifo adds a value into the Fifo.
take fifo takes the first value out of the Fifo.

3 Three Example Applications

We now describe three example applications that will allow us to get a feel of the
programming style required by our model and each of its implementations. They
will also serve to collect some performance data on the various implementations.

3.1 Kpn

We consider a problem treated by Dijkstra, and solve it by a Kahn process network,
as described in [11]. One is requested to generate the first n elements of the sequence
of integers of the form 2a3b5c (a, b, c ≥ 0) in increasing order, without omission or
repetition. The idea of the solution is to think of that sequence as a single object and
to notice that if we multiply it by 2, 3 or 5, we obtain subsequences. The solution
sequence is the least sequence containing 1 and satisfying that property and can
be computed as illustrated on Figure 1. The thread merge assumes two increasing
sequences of integers as input and merges them, eliminating duplications on the fly.
The thread times multiplies all elements of its input Fifo by the scalar a. Finally
the thread x prints the flow of numbers and put them in the three Fifos.2

All threads communicate and synchronize through MVars, except that the x

thread itself writes its data in three Fifos for the times threads to take it. The
computation is initiated by putting the value 1 in the m235 MVar so that x starts
running. Such a computation can be expressed as a list comprehension in some
languages, such as Haskell3 [21].

3.2 Eratosthene Sieve

Our second example is Eratosthene sieve. The sieve as a set of concurrent threads is
described in [11] (where it is said to appear the very first time in [19]). A variant can
also be found in [10]. The program is structured as a chain of threads exchanging
messages.

2 This description is borrowed from the cited article.
3 The Haskell code could be s = 1:merge [ x*2 | x <- s ] (merge [ x*3 | x <- s

] [ x*5 | x <- s ]) with merge defined appropriately.

3



merge

f5

f2

f3

times 2

times 3

times 5

merge x

m5

m3

m2

m35

1

m235

Fig. 1. Kpn (threads are circles, MVars squares, Fifos rectangles)

integers is the generator, it sends out all integers starting from 2,
filter n forwards the numbers it receives that are not multiple of its n parameter,
sift creates and inserts a new filter in the chain, for each number received,
output prints the numbers it receives.
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Fig. 2. Sieve as a chain of concurrent threads

Thus the sieve builds as a chain of filter threads with a generator (integers)
on the left and an expander (sift) preceding the consumer (output) on the right.
Threads communicate through MVars. Figure 2 shows the threads at startup and
after the first and second prime numbers have been found.

The code, shown in Figure 19 in both direct and indirect style (we’ll explain the
distinction when presenting the implementations), is particularly simple.

3.3 Concurrent Sort

Our third example is a concurrent sort described in [10]. As pointed out by the
authors, both bubble sort and insertion sort are sequentialized versions of this con-
current algorithm.

This sorting algorithm is made of a network of simple comparator threads, each
of which is used to sort a pair of values from two input MVars to two output MVars.
Such a comparator with inputs x and y and outputs hi and lo is shown on Figure
3(a). Figure 3(b) shows a network for sorting a group of 4 values.

MVars will be used to store the initial and final values, as well as for the com-
munication between the comparators. They are not shown on the figure. We don’t
show the source code of the concurrent sort to save space.
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Fig. 3. Concurrent sort

4 Direct Style Implementations

When programming in direct style the primitives will have the signatures shown
on Figure 4. Note that some of the operations are potentially blocking. The source
code for the sieve is shown on Figure 19(a).

In direct style, a potentially blocking operation looks just like an ordinary func-
tion. This is what is provided by preemptive scheduling systems since preemption
can occur anywhere. Thus, standard OCaml support for threads can be used to
implement our concurrency model in direct style. We don’t describe this implemen-
tation since its only purpose is to be able to measure how light our light weight
implementations really are.

val yield : unit → unit
val spawn : (unit → unit) → unit
val halt : unit → unit

val start : unit → unit
val stop : unit → unit

type α mvar
val make mvar : unit → α mvar
val take mvar : α mvar → α

val put mvar : α mvar → α → unit

Fig. 4. Direct style signatures for the thread primitives

4.1 Capturing Continuations

We want to be able to suspend a running thread and activate it again later, so
we need some way to save the current thread state, or rather continuation. The
continuation of a computation at some point is what remains to be done at this
point, in other words the rest of the computation. It is represented by the context

of the computation [4]. The control flow of a program can be treated in terms of
continuations.

The call with current continuation primitive (often abreviated as call/cc) was
first defined in Scheme [12]. It captures (makes a copy of) the current continuation
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and reifies (makes it available in the program) it into a value of type α cont . Thus,
continuations, which in most languages are implicit, can be explicitly captured and
manipulated (passed as parameters, saved in data structures etc) like any other
value. These “first class continuations” can also be thrown4(and given a parameter
of type α), meaning that the current continuation is discarded and replaced with
the thrown one, so that execution resumes at the point where the continuation was
captured. Continuations can be used to implement all sorts of manipulations of the
control flow, including multi-threading.

This implementation is designed along the lines described in [8]. The queue (of
type queue t) stores the continuations of the suspended threads but also the initial
continuation e (of the call to start) to be thrown when the queue becomes empty
so that control returns after the call to start .

type α t = α → unit
type queue t = { mutable e :unit t ; q :unit t Queue.t }

let q = { e = (fun()→ ()); q = Queue.create () }

let enqueue t = Queue.push t q .q
let dequeue () = try Queue.take q .q with Queue.Empty → q .e

There is no scheduler proper, rather each yielding thread captures its continua-
tion with callcc, packages and enqueues it before dequeueing and throwing the next
one. spawn inserts halt at the end of a new thread, so that it dequeues and throws
the next thread continuation when it terminates.

exception Stop
let stop () = raise Stop

let start () =
try

callcc (fun exitk →
q .e ← (fun () → throw exitk ());
dequeue () ())

with Stop → ()

let yield () =
callcc (fun k → enqueue (fun () → throw k ()); dequeue () ())

let halt () = dequeue () ()

let spawn p = enqueue (fun () → p (); halt ())

We implement MVars as a struct containing three option values (they may be
empty): the value stored in the MVar, the continuation of the thread blocked on a
take mvar operation, the continuation of the thread blocked on a put mvar oper-
ation along with the value it wanted to put. Suppose a thread blocks on put mvar ,
its continuation is captured by callcc, packaged and stored in the MVar write field.
The call to halt does not halt anything but ensures the next thread is resumed.
When a thread later performs take mvar on the same MVar it removes the pack-
aged continuation from the write field and enqueues it to be run. The code for Fifos
is obviously similar.

type α mvar = { mutable v : α option;
mutable read : α t option;
mutable write : (unit t × α) option }

let make mvar () = { v = None ; read = None; write = None }

4 Our description applies to a statically typed language such as OCaml. In Scheme cap-
tured continuations are actually reified into functions, the continuation is thrown by
applying the function.
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let put mvar out v =
match out with

| { v = Some v ; read = ; write = None } →
callcc (fun k →

out .write ← Some ((fun () → throw k ()), v); halt ())

| { v = None; read = Some r ; write = None } →
out .read ← None; enqueue (fun () → r v)

| { v = None; read = None; write = None } → out .v ← Some v ; ()

| → failwith "failed put mvar"

let take mvar inp =
match inp with

| { v = Some v ; read = None ; write = None } → inp.v ← None; v

| { v = Some v ; read = None ; write = Some(c, v ′) } →
inp.v ← Some v ′; inp.write ← None; enqueue c; v

| { v = None; read = None; write = } →
callcc (fun k →

inp.read ← Some (fun v → throw k v);
Obj .magic halt ())

| → failwith "failed take mvar"

Note that we have to fool the typechecker with Obj .magic in take mvar (and
take fifo) to ensure these functions are polymorphic. Otherwise, the call to halt

makes it decide the function must return unit and the MVars loose their polymor-
phism.

4.2 Delimited Continuations

callcc captures a whole continuation. An alternative is to capture delimited con-

tinuations, as provided by the caml-shift library [23]. A delimited continuation
(also called partial, composable, or sub continuation), is a prefix of the rest of the
computation, represented by a delimited part of the context of the computation.
Unlike regular continuations, delimited continuations return a value, and thus may
be reused and composed.

Several slightly different operators have been proposed in the litterature but the
general idea is that such a continuation is delimited by first pushing a delimiter
(often called a prompt) on the stack, and later capturing the continuation, up to
the first prompt.

In this library, push prompt pushes a prompt on the stack, marking the delim-
itation, while take subcont turns the part of the stack up to (and not including)
the first prompt into a (α, β) subcont value and removes it (along with the prompt)
from the stack.5 Here α is the type of values that must be given when throwing the
continuation, and β is the type of values returned by the continuation. push subcont

pushes a delimited continuation on the stack (i.e. throws it).
We can now use a simple FIFO queue (as provided by the OCaml Queue) to

implement our scheduler:

let runq = Queue.create ()
let enqueue t = Queue.push t runq
let dequeue () = Queue.take runq

exception Stop
let stop () = raise Stop

let start () =
try

while true do

dequeue () ()
done

with Queue.Empty | Stop → ()

5 This is the behavior of the operator know as control0 [13].
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let prompt = new prompt ()

let shift0 p f = take subcont p (fun sk () →
(f (fun c → push prompt subcont p sk (fun () → c))))

let yield () = shift0 prompt (fun f → enqueue f )

let halt () = shift0 prompt (fun f → ())

Basically, when suspending a thread we need to capture the continuation and
store it. When resuming a thread we need to re-push the prompt and the subcont.
When capturing a continuation we will package it in a function that pushes the
prompt and this continuation. This is the behavior of the shift0 operator [4]. The
scheduler just needs to run the packaged function for resuming a thread (thus the
dequeue () () in the start loop above).

halt removes any trailing context along with the prompt to “clean up” the stack.
The shift0 definition above is an optimized6 version of

let shift0 p f = take subcont p (fun sk () →
(f (fun c → push prompt p

(fun () → push subcont sk (fun () → c)))))

The spawn function (that adds a thread in the queue) packages its argument
thunk so that it first push prompt and calls halt at the end to ensure the prompt
is removed when the thread terminates.

let spawn t = enqueue (fun () → push prompt prompt (fun () → t (); halt ()))

The code for MVars is similar to the one using callcc. The only difference, beside
the continuation being captured by shift0 , is that the thread simply returns to the
scheduler that will itself resume the next thread.

type α t = α → unit
type α mvar = { mutable v : α option;

mutable read : α t option;
mutable write : (unit t × α) option }

let make mvar () = { v = None ; read = None; write = None }

let put mvar out v =
match out with

| { v = Some v ′; read = ; write = None } →
shift0 prompt (fun f → out .write ← Some (f , v))

| { v = None; read = Some r ; write = None } →
out .read ← None; enqueue (fun () → r v)

| { v = None; read = None; write = None } → out .v ← Some v

let take mvar inp =
match inp with

| { v = Some v ; read = None; write = None } → inp.v ← None; v

| { v = Some v ; read = None; write = Some(c, v ′) } →
inp.v ← Some v ′; inp.write ← None; enqueue c; v

| { v = None; read = None; write = } →
shift0 prompt (fun f → inp.read ← Some f )

6 Actually, the unoptimized version has a subtle memory leak (see [14, Appendix B]).
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5 Indirect Style Implementations

The basic idea of indirect style is to write the thread code so that the continuations
are made explicit (as closures) at each potentially blocking point. This way, the
continuation can be manipulated without the need for any continuation-capture
primitive.

Look at the code of the sift thread of the sieve on Figure 19(b). We use >>=
(pronounced bind) as the thread sequential composition operator.7 This operator
appears at cooperation points, between a potentially blocking operation and its
continuation. The continuation is a closure that will be executed when the blocking
operation will have completed. The parameter of the continuation will receive the
result of the operation. Imperative loops must be turned into (tail-) recursive func-
tions if they contain a blocking operation. One more operation is useful in indirect
style : skip, the no-op.

Trampolined style (derived from continuation passing style), monadic style based
either on continuations or on promises and event-based programming are all variants
of the indirect style. We describe implementations of our concurrency model in all
of them in the following.

5.1 Trampolined Style

The idea of trampolined style [9] is that the code is written so that a potentially
blocking function is given explicitly its continuation as a closure. It can then manip-
ulate it just like the direct style continuation-capture based versions. The code must
be written in a way similar to continuation passing style [25], but the continuations
need to be made explicit only at cooperation points.

Figure 5 shows the signatures of the operations. As we can see, each potentially
blocking operation is given (as an additional parameter) the (continuation) function
to run when the operation has been performed.

val skip : (unit → unit) → unit
val ( >>= ) : ((α → unit) → unit) → (α → unit) → unit

val yield : (unit → unit) → unit
val spawn : (unit → unit) → unit
val halt : unit → unit

val start : unit → unit
val stop : unit → unit

type α mvar
val make mvar : unit → α mvar
val take mvar : α mvar → (α → unit) →
unit
val put mvar : α mvar → α → (unit →
unit) → unit

Fig. 5. Trampolined style signatures for the thread primitives

For example the yield operation can be used as shown below on the left where
the argument is the continuation, i.e. the function to be executed when the thread
will be resumed. By defining “bind” (infix >>=) to take two arguments and apply
its first to the second (the continuation) we obtain a arguably more pleasant syn-
tax.8 Adopting an indentation more fitted to the intended “sequential execution”
semantics, the code can now be written as below on the right.

7 This is borrowed from monad syntax but does not necessarily represent here “the” bind
operator from monads, as we’ll see.

8 Haskell programmers will think of the $ operator.
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print string "hoho";
yield (fun () →

print string "haha";
yield (fun () →

...
))

let (>>=) inst (k : α → unit) : unit = inst k
...
print string "hoho";
yield >>= fun () →
print string "haha";
yield >>= fun () →
...

Writing code so that continuations are explicit is often not as intrusive as one
may feel initially. As the code for the sieve shows, continuations often do not even
appear explicitly. Actually, only when using procedural abstractions to build com-
plex blocking operations do we need to manipulate explicitly the extra parameter.
Even then it is easy, as the following two functions show. The first one abstracts the
operation of yield ing three times and the second one the transfer of a value from
an MVar to another one:

let yield3 k =
yield >>= fun () →
yield >>= fun () →
yield >>=
k

let transfer mvar m1 m2 k =
take mvar m1 >>= fun v →
put mvar m2 v >>=
k

Implementation Since a potentially blocking function, such as yield or take mvar ,
takes its continuation as an additional parameter, it can execute it immediately or,
if it needs to block, store it for later resuming before returning to the scheduler.

The code is very similar to the one using delimited continuations: the only
difference is we don’t have to capture continuations as they are provided explicitly
as illustrated below:

let skip k = k ()
let yield k = enqueue k
let halt () = ()

let spawn t = enqueue t
let close k = fun () → k (fun → ())

let take mvar inp k =
match inp with

| { v = Some v ; read = None; write = None } → inp.v ← None; k v

| { v = Some v ; read = None; write = Some(c, v ′) } →
inp.v ← Some v ′; inp.write ← None; enqueue c; k v

| { v = None ; read = None; write = } → inp.read ← Some(k)

A small note about spawn . We can see that composing fragments with >>=
produces a function accepting a continuation that needs, before to be executed, to
be given a final dummy continuation. spawn could do that, but as the sieve example
shows, when composing recursively we may omit the thread continuation argument.
We thus define spawn as acting on thunks, and define a close function building a
thunk by providing the dummy continuation.

5.2 Continuation Monad

Trampolined style has been created in the dynamically language Scheme. As we’ll
see, the continuation monad [5] is basically a formulation of the same ideas in a
statically typed language. But let’s first quicky define monads.

Monads are useful in a variety of situations for dealing with effects in a functional
setting [20]. A monad is a (parameterized) data type α t with (at least) the return

and bind (noted infix >>=) primitives whose types are shown on Figure 6. As the
types suggest, return v builds a monadic α t value “containing” v and m >>= f

“opens up” m to get its enclosed value v , give it to f and return the monadic value
returned by f .
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Here we can define type α t = (α → unit) → unit so that a “monadic
value” α t is a function taking an α → unit continuation. We can now think of
blocking functions as returning a value of type α t as can be seen on Figure 6.

type α t
val return : α → α t
val ( >>= ) : α t → (α → β t) → β t

val spawn : (unit → unit t) → unit
val skip : unit t
val yield : unit → unit t
val halt : unit → unit t
val stop : unit → unit t
val start : unit → unit

type α mvar
val make mvar : unit → α mvar
val put mvar : α mvar → α → unit t
val take mvar : α mvar → α t

Fig. 6. Monadic style signatures for the thread primitives

This bind is obviously different from the trivial application operator that we
used in trampolined style. Apart from ensuring there’s one argument to all functions
(besides the continuation) it removes the need to explicitly manage the continuation
parameter when composing thread fragments. Here’s our yield3 example (we have
cosmetically changed the definition of yield so that it takes a () argument to be
compatible with the new bind):

let yield3 () =
yield () >>= fun () →
yield () >>= fun () →
yield ()

let transfer mvar m1 m2 =
take mvar m1 >>= fun v →
put mvar m2 v

Just to be explicit about how this works, the “expanded” types and definitions
of return and bind are:

val return : α → (α → unit) → unit
let return a = fun k → k a

val (>>=) : ((α → unit) → unit) → (α → (β → unit) → unit) → (β →
unit) → unit
let (>>=) f k ′ = fun k → f (fun r → k ′ r k)

that is, bind returns a function accepting a continuation. Let’s see this on our
transfer mvar example by expanding its definition:

transfer mvar m1 m2 ,

fun k → take mvar m1 (fun r → (fun v → put mvar m2 v) r k)

Finally, spawn provides the final dummy continuation to get a thunk it then
enqueues.

let spawn (t : unit → unit t) = enqueue (fun () → t () (fun () → ()))

5.3 Promise Monad

A promise [18] is a “proxy” value that can be used to later access a value that
is not immediately available. Using promises, blocking operations need not block:
they return immediately a promise for the requested value. A promise can either
be ready if the value is indeed available or blocked if it’s still not. The promise can
be passed along until its value is actually needed: the claim operation will then be
used to get the promised value. Of course claim itself may block.
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Using the promise monad to implement threading, operations will still have the
signatures of Figure 6. Blocking operations will return a promise and the duty of
claim will be performed by bind . In t >>= f , bind will either:

– pass t ’s value to f if it’s ready (thus returning the promise returned by f ),

– or return a blocked promise and set up things so that:

• f is passed the promised value as soon as t becomes ready,

• the returned blocked promise is “the one” returned by f .

Implementation Here’s a brief description of how it can be implemented (Figure
7). This implementation is heavily inspired by Lwt (light weigth threads) [26], a
cooperative threads library for OCaml. Our implementation tries to retain only the
core workings of Lwt so that it can be compared to the other implementations.
Also, [26] describes it differently, by interpreting α t as the type of threads rather
than that of promises.

α t is the type of promises for a value of type α. It is a record with one
mutable field denoting the current promise state. It can be Ready and containing
the promised value, Blocked and holding a list of thunks (the “waiters”) to execute
when it will be ready, or Linked to another one (that means it will behave the same,
having been connected to it). repr gets the promise a given promise is Linked to.

Consider the evaluation of t >>= f , following the code for >>=. Evaluating
t provides a promise. If it’s ready its value v is passed to f . If it’s blocked, its value
is Blocked w . A new blocked promise res is created, a thunk is added to the w list,
then res is returned.

Thus, when t becomes ready (through fullfill), the thunk is executed. It passes
the value to f which returns a new promise (let’s call it p). res is then connected to
p. The code for connect shows that if p is ready res is fullfilled. If p is blocked it is
changed as a Link to res : this ensures any later operation (such as fullfill ) involving
p will be actually performed on res.

type α state =
| Ready of α

| Blocked of (α t → unit) list ref
| Link of α t

and α t = { mutable st : α state }

let rec repr t =
match t .st with

| Link t ′ → repr t ′

| → t

let blocked () = { st = Blocked (ref [ ]) }
let ready v = { st = Ready v }

let runq = Queue.create ()
let enqueue t = Queue.push t runq
let dequeue () = Queue.take runq

let fullfill t v =
let t = repr t in

match t .st with

| Blocked w →

t .st ← Ready v ;
List .iter (fun f → f t) !w

| → failwith "fullfill"

let connect t t ′ =
let t ′ = repr t ′ in
match t ′.st with

| Ready v → fullfill t v
| Blocked w ′ →

let t = repr t in

match t .st with

| Blocked w → w := !w @ !w ′;
t ′.st ← Link t

| → failwith "connect"

let (>>=) t f =
match (repr t).st with

| Ready v → f v
| Blocked w → let res = blocked () in

w := (fun t → let Ready v = t .st in
connect res (f v)) :: !w ;

res

Fig. 7. Promise monad: core
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Figure 8 shows that the scheduler first fullfills the wait start promise. spawn
makes threads wait on it to ensure they don’t start running before allowed to. The
code for yield shows how we suspend a thread: we create a blocked promise p,
enqueue a function that will fullfill it and return p. bind will add to p a thunk
connect ing the promise of the next computation to its own res . When the scheduler
dequeues the function enqueued by yield , it fullfills p and so executes the thunk.
The same applies for MVars.

let skip = ready ()
let halt () = ready ()
let yield () = let p = blocked () in enqueue (fun () → fullfill p ()); p
let wait start = blocked ()
let spawn t = wait start >>= t ; ()

exception Stop
let stop () = raise Stop

let start () =
fullfill wait start ();
try

while true do

dequeue () ()
done

with Queue.Empty | Stop → ()

type α mvar = { mutable v : α option;
mutable read : α t option;
mutable write : (unit t × α) option }

let put mvar out v =
match out with

| { v = Some v ′; read = ; write = None } →
let w = blocked () in out .write ← Some (w , v); w

| { v = None; read = Some r ; write = None } →
out .read ← None; enqueue (fun () → fullfill r v); ready ()

| { v = None; read = None; write = None } → out .v ← Some v ; ready ()

Fig. 8. Promise monad: scheduler, MVars

It’s not obvious to see how operations chain, so we illustrate the execution of
our yield3 example on Figure 9. A promise is shown as a square (R for ready, B for
blocked, pointing to its waiter thunk if any, L for a link). (a) In the first occurence of
bind (subscripted 1 for convenience), the first yield (subscripted a) returns a blocked
promise pa . bind adds it a waiter thunk and returns a fresh blocked promise res1 .
Remember yield has enqueued a thunk to fullfill pa . (b) When this occurs, pa ’s
waiter thunk is executed. yieldb returns a blocked promise pb with the rest of the
computation as waiter thunk. bind2 returns a new blocked promise res2 which is
connected to res1 . Since res2 is blocked, it is turned into a link to res1 . (c) When
pb ’s waiter thunk is executed, yieldc returns still a blocked promise pc , that is turned
into a link to res1 (since res2 is itself a link to res1 ) by connect . (d) Finally, when
pc is fullfilled, res1 becomes ready.
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R R

(a)

(b)

(c)

(d)

res1 pa

res1 pa
pbres2 pc

pbres2 pc

res1 pa
pbres2

connect res1 (bind2 (yieldb ()) yieldc)

connect res2 (yieldc ())

res1 pa

bind1 (yielda ())

fun () → connect res2 (yieldc ())

fun () → connect res1 (bind2 (yieldb ()) yieldc)

yieldc)
(fun () → bind2 (yieldb ())

Fig. 9. Execution of yield3

5.4 Event-based Programming

A popular paradigm supporting user level concurrency is event-driven programming.
The OCamlNet library [24] provides an equeue (for event queue) module in which
handlers (or callbacks) are set up to process events.

We describe it briefly. First an event system (called esys here) must be created.
Events are generated by an event source (here it is the function fun → () that
generates none) but can also be added by the handlers themselves. Each event in
presented to each handler, in turn, until one accepts it (or it is dropped if no one
does). An handler rejects an event by raising the Reject exception. Otherwise the
event is accepted. In case the handler, having accepted the event, wants to remove
itself it must raise the Terminate exception.

The event system is activated by the Equeue.run function. The function returns
when all events have been consumed and the event source does not add any.

In our implementation, handlers will always be “one shot”, so they will always
raise Terminate after having accepted an event. But before to do that, they will
have registered a new handler representing the thread continuation.

For yield ing, a thread creates a new eventid , registers its continuation as a
handler to the Go event with the correct id, and adds this precise event to the
system.

let skip k = k ()

let (>>=) inst k = inst k

type eventid = unit ref
type α event = Written of eventid
| Read of eventid × α | Go of eventid

let make eventid () = ref ()

let esys : int event Equeue.t =
Equeue.create (fun → ())

let yield k =
let id = make eventid () in
Equeue.add handler esys

(fun esys e →
match e with
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| Go id ′ when id ′ ≡ id → k ()
| → raise Equeue.Reject);

Equeue.add event esys (Go id);
raise Equeue.Terminate

A thread blocked on a MVar waits for a unique event allowing it to proceed.
Blocked writers create a new eventid that they register in the control information
of the MVar, along with the value they want to write. They then wait for a Written

event with the correct id. Such an event will be generated when the value will have
been actually put in the MVar, operation triggered by the takeing of the current
MVar value by another thread. Blocked readers create a new eventid and wait for
the Read event that will carry the value taken from the MVar. Again, this event
will be generated when some thread puts a value in the MVar.

type α mvar = { mutable v : α option;
mutable read : eventid option;
mutable write : (eventid × α) option }

let make mvar () = { v = None ; read = None; write = None }

let put mvar out v k =
match out with

| { v = Some v ′; read = ; write = None } →
let id = make eventid () in out .write ← Some (id , v);
Equeue.add handler esys (fun esys e →

match e with

| Written id ′ when id ′ ≡ id → k ()
| → raise Equeue.Reject );

raise Equeue.Terminate

| { v = None; read = Some id ; write = None } →
out .read ← None;
Equeue.add event esys (Read(id , v));
k ()

| { v = None; read = None; write = None } → out .v ← Some v ; k ()

Since each blocking operation (in case it actually blocks) registers a new handler
and then raises Terminate, threads must be running as handlers from the very
beginning (for the Terminate exception to be catched by the event system). To
ensure this, spawn registers the new thread as a handler for a new Go event, then
adds the event to the system.

let spawn t =
let id = make eventid () in
Equeue.add handler esys (fun esys e →

match e with

| Go id ′ when id ′ ≡ id → t ()
| → raise Equeue.Reject);

Equeue.add event esys (Go id)

There’s one serious pitfall with this implementation: MVar operations are not
polymorphic due to the event system being a monomorphic queue. Thus, all MVars
are required to store the same type of value, which is a serious limitation.

The code for the applications is strictly the same as for the trampolined im-
plementation. Indeed, the threads are written in trampolined style and the event
framework is only used to build the scheduler. This implementation can be seen
more as an exercise in style.9

9 But one could argue that all our implementations are!
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6 Performance

We have measured the time and memory needs of these implementations on the
three examples. The execution times were collected by the Unix .times function,
while the memory usage was measured as the top heap words given by the quick stat

function of the OCaml Gc module (that provides an interface to the garbage collec-
tor).

All the programs were run on a PC powered by an Intel Core 2 Duo CPU
clocked at 2.33 GHz with 2 GB of memory, running the linux kernel version 2.6.26
with amd64 architecture. Software versions were OCaml 3.11.2, caml-shift august
2010, equeue 2.2.9.

All our examples use very simple threads that cooperate heavily. kpn has a fixed
number of threads, sieve is interesting because it constantly creates new threads.
sorter has both a number of threads (all initially spawn) and a number of operations
depending on the problem size. Moreover, its number of threads can easily be made
huge (for sorting a list of 3000 numbers, there’re about 4.5 million threads). To
measure thread creation time alone, we will also run it with a parameter -d that
terminates the program as soon as the sorting network has been set up.

In the following text and graphs, we’ll call sys the implementation using system
threads, vm the VM threads, callcc and dlcont the continuation captures, tramp
the trampolined style, cont the continuation monad, promise the promise monad,
and equeue the event-based one.
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Fig. 10. kpn, execution time

Execution time Figure 10 shows the execution time for kpn, on a log-log graph.
callcc is notably slow. Even heavy-weight sys is much faster, vm being ten times
faster. The other implementations are rather similar, tramp being slightly better in
the bytecode version.

We note that dlcont performance is on par with promises and equeue for
bytecode but slower in native code. VM threads are much better than system threads
and are only slightly slower than the light weigth implementations.

Figure 11 shows the execution times for the sieve. equeue performance is terrible
(much worse than sys). The problem is in the implementation of the Equeuemodule.
As we said, events are presented to each handler in turn until one accepts it. In effect
the threads are performing active wait on the MVars. Thus, equeue does not scale
with the number of threads.

As a side note, it seems that a simple change in Equeue implementation would
dramatically improve performance for the sieve: events should be presented only
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Fig. 12. sorter, execution time

to (or starting with) handlers set up after the handler that generated them, in the
order they were set up. This way each event would be presented immediately to
the handler that is waiting for it. This would take advantage of the very particular
communication pattern of the concurrent sieve and is not generally applicable, of
course.

vm and sys are both much slower than the other light weight implementations,
among which tramp is the fastest (with cont only slightly above). Time doubles for
promise and doubles again for callcc and dlcont in bytecode. dlcont performs
very poorly in native code.

For sorter (Figure 12), callcc makes the system trash, equeue is not shown,
while sys is shown only for lists of size 100 and 200. The number of threads used
by sorter is about n× (n− 1)/2 with n the list size, which means 19900 threads for
n=200 and 44850 for 300. vm performs very badly. Here again tramp and cont are
notably better. promises is always significantly slower than tramp and cont. This
is certainly due to the much more complex implementation of the bind operator.

Figure 13 shows the time to set up the sorter network but not running it. The
main difference is dlcont and callcc being rather good this time. Indeed, since
the threads are not running, no continuation captures are performed!

This is the only figure where the some performances for bytecode are (slighlty)
better than those for native code. According to OCaml’s documentation native code
executables are faster but also bigger which can translate into larger startup time
but this wouldn’t alone explain what we see here. Memory allocation may be slower
since sorter -d essentially allocates (a large number of) threads and MVars.
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Fig. 13. sorter -d, setup time only

Memory usage We don’t show the graphs for kpn: they are as expected with all
implementations having the same constant memory requirement with the notable
exception of callcc whose memory consumption increases roughly linearly with
time. There’s clearly a memory leak, but the authors had warned us of its experi-
mental status.

The graphs for sieve are shown in Figure 14. tramp/cont are clearly the best.
equeue is good too but values are shown only for the first few points since the
program is so slow. . .We don’t show sys since we should also measure the memory
used by the operating system itself in its managing of threads. vm is hidden behind
dlcont.

dlcont is much above the other implementations for sorter on Figure 15, but is
quite good (as callcc) with sorter -d since again no continuation captures occur.
We don’t include the graphs for native code, they mainly show promise is better
in native code than byte code.
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Fig. 14. sieve, memory usage

Finally Figures 16, 17, and 18 present the same data with a different view: they
show the memory requirements per thread. Apart from dlcont that is very good
in native code, tramp and cont are always under the other implementations. It’s
interesting to see on Figures 17 and 18 that its advantage is much larger when the
threads are running. The advantage over promise is probably caused by the relative
complexity introduced by the handling of promises.
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Fig. 16. sieve, memory usage per thread

Other comments It has been noted [2] that continuations used for implementing
threads are one shot continuations. Specific optimized implementations may be
designed for them but no such implementation currently exists for OCaml. Likewise,
the equeue module is clearly designed with long standing handlers in mind. Since
we use one shot handlers, we pay the cost of throwing an exception (to remove the
current handler) at each cooperation point.

7 Conclusion and Perspectives

We have described, implemented, and evaluated several ways to implement light
weight concurrency in OCaml. The complete code for the implementations is avail-
able on the web (http://christophe.deleuze.free.fr/lwc/). A direct style im-
plementation involves capturing continuations, which is relatively costly (although
much less than what is incurred by VM or system threads). Indirect style imple-
mentations perform better but force the programmer to write in a specific style.

As we saw, event-based programming can be seen as a form of trampolined
style programming with an event-based scheduling strategy. We didn’t realize this
immediately since event-based programming is mostly associated with imperative
languages while trampolined style is with functional ones.

Apart from equeue that is not designed for massive concurrency, the light weight
implementations can easily handle millions of threads. The trampolined implemen-
tation is the lighter, with the continuation monad slightly above. Using promises is
significantly more costly: each cooperation point involves much more operations. Of
course our examples are minimal, threads do very little work between cooperation
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Fig. 18. sorter -d, memory usage per thread

points so any difference in the performance of their implementation is magnified.
This should be kept in mind when looking at the performance results.

Our implementations are skeletons, realistic libraries should at least deal prop-
erly with I/O and exceptions. As we said Lwt is such a mature library based on
the promise monad. We are currently developping a library (called µthreads) for
light weight concurrency in OCaml, based on the trampoline scheme. More realistic
applications, such as an FTP server and a DNS resolver, are also being developed.
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