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Résumé

Cette thèse étudie la distribution de contenu sur Internet. Dans la première partie nous
étudions les méthodes de redirection des clients. Nous développons une architecture pour lo-
caliser les copies d'un objet. Cette architecture est une extension du Domain Name System
et peut être mise en place d'une manière incrémentale. Nous présentons une architecture
d'annuaire répliqué et montrons comment réaliser le Domain Name System avec cette ar-
chitecture. Cette architecture permet de stocker des informations qui changent rapidement,
elle peut être réalisée de manière incrémentale, et ne nécessite aucun changement logiciel.
L'évaluation de performance de cette architecture nous donne des indications sur la durée
pendant laquelle on peut cacher l'information. Nous évaluons aussi les performance des
méthodes de redirection utilisées par les réseaux de distribution de contenu modernes. Nos
résultats montrent que le coût associé à l'ouverture de nouvelles connexions peut limiter
sévèrement les performances perçues par l'utilisateur.

Dans la deuxième partie nous considérons la réplication d'objets. Nous développons un
modèle d'optimisation combinatoire pour répliquer des objets dans un réseau de distribu-
tion. Nos résultats montrent que la meilleure performance est obtenue quand la réplication
est coordonnée sur tout le réseau. Nous étudions la réplication optimale de contenu dans les
réseaux de type peer-to-peer. Nous construisons un modèle et développons plusieurs algo-
rithmes adaptatifs pour répliquer les objets de manière dynamique. Nos résultats montrent
que nos algorithmes, combinés avec une politique de remplacement LFU, o�rent une per-
formance presque optimale. Nous considérons aussi la distribution de vidéos en couches en
utilisant un modèle de "knapsack" stochastique. Nous développons plusieurs heuristiques
pour déterminer quelles couches de quelles vidéos doivent être cachées a�n de maximiser
le revenu.
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Abstract

This thesis studies Internet content distribution. In the �rst part of the thesis we consider
client redirection mechanisms. We develop an architecture for locating copies of cached
objects. This architecture is a small extension to the Domain Name System and can be
deployed incrementally. We present an architecture of an Internet-wide replicated directory
service and show how the current Domain Name System can be implemented with this
architecture. The key features of this architecture are that it allows us to store rapidly
changing information, can be deployed incrementally, and requires no changes to existing
software. Our extensive performance evaluation of this architecture provides us with insight
on how long the information can be cached. We also evaluate the performance of the
redirection mechanisms used by modern content distribution networks. We �nd that the
overhead of opening new connections to new servers can severly limit the user-perceived
performance.

In the second part of the thesis we consider object replication in content distribu-
tion. We develop a combinatorial optimization model for optimally replicating objects
in a content distribution network. Our results show that best performance is obtained
when replication is coordinated over the whole network. Using the same model we also
develop cooperation strategies for peer-to-peer networks. We also consider the problem of
optimal content replication in peer-to-peer communities. We formulate this problem as an
integer programming problem and develop several adaptive algorithms to replicate objects
on-the-�y. Our results indicate that our algorithms combined with least-frequently-used
replacement policy provide near-optimal performance. We also consider the distribution of
layered encoded video using a stochastic knapsack model. We develop several heuristics to
determine which layers of which videos should be cached in order to maximize the accrued
revenue.
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Introduction

Ces dernières années l'Internet et le World Wide Web sont devenus très populaires.
L'Internet est devenu une source importante d'information et de divertissement pour des
personnes partout dans le monde. Cette croissance phénoménale a été incitée par la facilité
d'utilisation des "browsers", et l'ajout d'un contenu plus attrayant, tel que l'audio et la
vidéo. Plus les gens auront un accès rapide chez eux, comme l'ADSL et le câble, plus la
demande de contenu de haute qualité augmentera. En outre, comme les réseaux sans �l,
tels que les téléphones portables et les PDAs, deviennent plus populaires, nous pourrons
accéder à l'Internet de n'importe où et à n'importe quel moment.

Cette demande toujours croissante place une charge élevée sur l'infrastructure de l'In-
ternet. Les serveurs et les liaisons du réseau doivent supporter une demande fortement
variable et imprévisible. Certains contenus, tels que les portails principaux comme Ya-
hoo [94], MSN [49], ou Netscape [54], sont constamment populaires, et l'opérateur du site
peut prendre des mesures pour augmenter sa disponibilité. La répartition de la charge sur
plusieurs serveurs et l'installation de liaisons de haute capacité peuvent considérablement
aider à fournir un service meilleur et plus rapide.

Le problème principal est ce que l'on appelle les "hot-spots". Ceux-ci se produisent
quand un certain contenu devient soudainement extrêmement populaire, en général seule-
ment durant une courte période. Des exemples de ces "hot-spots" sont des événements
sportifs, d'autres événements d'actualité, ou le lancement d'une nouvelle version d'un lo-
giciel populaire. Tous ces événements produisent une charge très élevée sur le serveur
disposant du contenu en question, mais il est di�cile de prévoir exactement quelle capa-
cité est nécessaire. Parfois ces événements sont soudains, comme par exemple quelqu'un
qui publie, sur un forum de discussion, un lien sur une page Web et lorsque les membres
du forum veulent accéder à cette page. Le traitement de ces "hot-spots" est le problème
principal que pose la distribution de l'information sur Internet.

La solution de base, sur laquelle les architectures modernes de distribution de contenu
sont fondées, est de répliquer le contenu sur plusieurs serveurs et de diriger les di�érents
clients sur les di�érents serveurs. Ceci garantit que la charge sur les serveurs et les liens
du réseau restent gérables et que les utilisateurs peuvent obtenir le contenu désiré en
un temps raisonnable. Cela pose néanmoins deux problèmes. D'abord, il faut savoir où et
comment répliquer le contenu, et ensuite, comment s'assurer que les clients peuvent trouver
ce contenu répliqué.

Le but de cette thèse est d'étudier les architectures de distribution de l'information.
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Cette thèse est dans deux parties. Dans la première partie nous étudions des méthodes de
redirection des clients et dans la deuxième partie nous étudions des stratégies de réplication
des objets.

Une redirection de client e�cace devrait remplir deux conditions. D'abord, elle devrait
équilibrer la charge sur l'ensemble des serveurs disponibles aussi également que possible.
Ensuite, elle devrait être facile à déployer en pratique. Cette deuxième condition s'avère
être bien plus stricte que la première, parce qu'elle exige que nous ne puissions pas changer
le logiciel sur les clients. Il y a déjà un grand nombre de logiciels installés et il est impos-
sible de forcer tout le monde à installer une nouvelle version du browser pour pro�ter des
dispositifs de redirection. Ceci implique que le mécanisme de redirection devrait s'insérer
de manière transparente dans la chaîne existante de requête-réponse. Une approche alter-
native est d'utiliser les mécanismes qui peuvent être mis en place de manière incrémentale,
tels que le 'Location Data System' que nous présentons dans le chapitre 3. L'avantage
des mécanismes qui s'insèrent dans la chaîne de requête-réponse, telle que la redirection
DNS comme elle pratiquée par les réseaux de distribution de contenu modernes, est qu'ils
sont immédiatement à la disposition de tous les clients. L'inconvénient de ces méthodes
est qu'elles ne sont pas nécessairement entièrement transparentes à l'utilisateur, et elles
peuvent entraîner une perte de performance.

Les mécanismes de réplication des objets sont étroitement liés aux mécanismes de redi-
rection. Après tout, quand les objets ont été répliqués sur plusieurs serveurs, nous devons
pouvoir diriger des clients vers ces serveurs. La réplication des objets est typiquement gérée
par le fournisseur de contenu ou par un tiers pour le fournisseur de contenu. Par consé-
quent, il est possible d'utiliser des mécanismes plus élaborés qui peuvent même exiger de
changer tout le logiciel sur le serveur. Ceci nous donne la possibilité de coordonner la créa-
tion des copies et de les gérer en fonction de la capacité disponible sur le serveur et dans le
réseau, et au fur et à mesure des requêtes des clients. En e�et, comme nous montrons dans
le chapitre 6, le placement coordonné des copies d'objets fournit la meilleure performance,
en comparaison des méthodes qui essayent d'agir sans coordination. Avec la redirection des
clients, la réplication des objets nous o�re la possibilité de distribuer la charge sur plusieurs
serveurs, et de garantir ainsi la livraison rapide du contenu aux utilisateurs.

Dans le chapitre 2 nous présentons un état de l'art des technologies de distribution
de contenu et de leurs architectures, ainsi que leur évolution d'une architecture de base
client�serveur aux réseaux de distribution de contenu actuels. Nous prêterons une attention
particulière à la façon dont ces technologies ont considéré les problèmes de la re-direction
et de la réplication et aux avantages et inconvénients de ces solutions.

Nous présentons à présent les contributions principales de cette thèse.

Contributions de la thèse

Cette thèse apporte plusieurs contributions. La première contribution (chapitre 3) est
une architecture pour localiser des copies d'objets. Cette architecture est basée sur une
extension du Domain Name System (DNS) et permet aux clients de localiser des serveurs,
des miroirs, ou des caches qui contiennent une copie de l'objet demandé. Cette architecture
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exige seulement des extensions mineures au DNS et peut être mis en place d'une manière
incrémentale. Nous proposons également des méthodes que les clients peuvent utiliser pour
déterminer quelles copies sont "les meilleures" parmi toutes les copies disponibles, c'est à
dire celles qui pourront être téléchargées le plus rapidement.

La deuxième contribution (chapitre 4) est une architecture nouvelle pour un service
d'annuaire répliqué à l'échelle de l'Internet. Nous montrons également comment cette ar-
chitecture peut être utilisée pour le Domain Name System actuel. L'atout principal de
cette nouvelle architecture est qu'elle nous permet de stocker l'information qui change ra-
pidement dans le DNS. Actuellement, en raison de l'utilisation des caches, la capacité du
système DNS pour stocker de l'information qui change rapidement est très limitée. Notre
architecture utilise les technologies de communication multipoint et satellite, ce qui, avec le
coût faible actuel de l'espace de stockage sur disque dur, nous permet de répliquer toute la
base de données DNS sur certains serveurs. Ceci nous permet de maintenir la cohérence des
données qui changent rapidement sur tous les serveurs, et également de diminuer de manière
signi�cative le temps de latence des requêtes DNS. Notre architecture est complètement
transparente aux clients du DNS et peut être mis en place d'une manière incrémentale sans
aucun changement aux logiciels DNS déployés. Nous présentons également une analyse de
performance de notre architecture.

La troisième contribution (chapitre 5) est une évaluation des mécanismes de redirection
utilisés dans les réseaux de distribution de contenu modernes. Les réseaux de distribution
de contenu actuels emploient le DNS pour rediriger les clients vers les serveurs de contenu.
Nous pouvons distinguer deux types de redirections � la redirection totale et la redirection
sélective. En utilisant des simulations et des expériences avec des serveurs sur l'Internet,
nous comparons comment ces méthodes de redirection a�ectent la performance perçue par
l'utilisateur. Nos résultats indiquent que la redirection totale apporte une performance
supérieure parce qu'elle évite l'ouverture de nouvelles connexions TCP, ce qui peut consi-
dérablement dégrader la performance de la redirection sélective. Bien que ce résultat puisse
sembler intuitif, notre contribution dans ce chapitre est l'évaluation quantitative et numé-
rique de cette di�érence et son e�et sur la performance perçue par l'utilisateur.

En tant que notre quatrième contribution (chapitre 6), nous étudions des stratégies
de réplication des objets dans les réseaux de distribution de contenu. Nous formulons
le problème du placement optimal des copies d'objet comme un problème d'optimisation
combinatoire que nous montrons être NP-complet. Nous développons plusieurs heuristiques
pour déterminer le placement des copies et, en utilisant de vraies topologies de l'Internet,
nous évaluons les performances de nos heuristiques. Nos résultats indiquent que la meilleure
performance est obtenue quand la réplication des objets est coordonnée à travers tout le
réseau. Les stratégies qui fonctionnent seulement localement sur un n÷ud donnent une
performance inférieure. Nous développons également un modèle de coopération pour les
réseaux de type "peer-to-peer". L'évaluation de ce modèle nous montre que la coopération
peut rapporter des avantages signi�catifs pour les pairs en coopération.

Notre cinquième contribution (chapitre 7) est un ensemble d'algorithmes pour répliquer
et localiser des objets dans une communauté peer-to-peer. Nous distinguons deux types
de communautés : les caches de contenu et les clubs de contenu. Dans les deux cas, nous
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formulons le problème comme un problème de programmation de nombre entier qui nous
fournit la solution optimale. Nous fournissons plusieurs algorithmes adaptatifs et distribués
pour répliquer les objets dynamiquement et nous évaluons leur performance par des simula-
tions. Nous trouvons qu'en combinant nos algorithmes avec une politique de remplacement
LFU distribuée nous pouvons obtenir une performance quasi-optimale, en termes de taux
de succès (ou 'hit-rate') et en nombre de copies d'objet. Nous considérons également une
version modi�ée du problème initial qui ajoute des contraintes pour équilibrer la charge
sur tous les n÷uds.

En tant que notre sixième contribution (chapitre 8), nous étudions la distribution de
vidéos encodées en couches et distribuées à travers des caches. Nous avons considéré deux
ressources, la mémoire de cache et la capacité du lien du réseau, et nous avons modélisé le
problème en utilisant un modèle de knapsack stochastique. Dans notre modèle, les clients
peuvent demander n'importe quel nombre de couches de la vidéo, en fonction de leur
connectivité au réseau. La vidéo étant encodée en couches, nous avons la contrainte que
toutes les couches inférieures doivent être présentes au décodeur pour pouvoir décoder et
a�cher une couche donnée. Nous proposons plusieurs heuristiques pour déterminer quelles
couches de quelles vidéos devraient être cachés a�n de maximiser le revenu total. Nous
évaluons les performances de nos heuristiques par des expériences numériques. En outre,
nous considérons également deux extensions intuitives, les négociations de qualité et les
�les d'attente pour les requêtes, mais nos résultats indiquent qu'elles n'ont qu'un e�et
secondaire sur la performance globale. Nous considérons également le cas où l'on cache
uniquement quelques couches basses et où tous les clients sont seulement intéressés par
des vidéos de pleine qualité. Nous avons découvert qu'il n'est pas avantageux de cacher
seulement quelques couches inférieures d'une vidéo lorsque les clients demandent la pleine
qualité, et que nous devrions toujours cacher des vidéos complètes.

Organisation de la thèse

Cette thèse se compose d'un chapitre préliminaire qui présente une vue d'ensemble des
technologies de distribution de contenu, de six chapitres de recherche en deux parties, et
d'un chapitre de conclusion.

Dans la première partie de cette thèse, couvrant les chapitres 3, 4, et 5, nous nous
concentrons sur la redirection des clients. Le chapitre 3 présente le Système de Localisation
des Données ou "Location Data System". C'est un système conçu pour informer les clients
des copies d'objets qui existent dans le réseau. Le chapitre 4 décrit notre architecture pour
le Domain Name System répliqué. Nous présentons une vue globale de l'architecture, une
évaluation des performances, des stratégies de migration du DNS existant, et considérons
des questions de sécurité et de tolérance aux pannes. Le chapitre 5 évalue les performances
des méthodes de redirection utilisées par les réseaux de distribution de contenu. Grâce à
des simulations et des expériences sur l'Internet, nous évaluons les e�ets de la redirection
sur la performance perçue par l'utilisateur.

Dans la deuxième partie de cette thèse, couvrant les chapitres 6, 7, et 8, nous nous
concentrons sur la réplication des objets. Le chapitre 6 présente un modèle pour la répli-
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cation optimale des objets dans un réseau de distribution de contenu, développe plusieurs
heuristiques, et évalue leur performance en utilisant de vraies topologies de l'Internet. Nous
développons également un modèle de coopération pour des réseaux de type peer-to-peer.
Dans le chapitre 7 nous considérons la réplication optimale de contenu dans les commu-
nautés peer-to-peer. Nous développons un modèle qui nous donne une solution optimale,
et nous présentons des algorithmes adaptatifs qui peuvent être employés pour répliquer
le contenu de manière dynamique. Le chapitre 8 considère le problème de cacher des vi-
déos encodées en couches. Nous présentons un modèle basé sur le knapsack stochastique,
développons plusieurs heuristiques, et évaluons leur performance par des expériences nu-
mériques.

Chacun des six chapitres de recherche est indépendant et, en plus de la contribution
principale, présente un état de l'art du sujet abordé dans le chapitre ainsi que des directions
futures de recherche pour ce sujet. En conclusion, le chapitre 9 récapitule les résultats et
les contributions de cette thèse.
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Chapter 1

Introduction

In recent years the Internet and the World Wide Web have exploded in popularity. The
Internet has become an important source of both information and entertainment for people
all over the world. The phenomenal growth has been spurred on by the increasing ease
of use of browsers, and the addition of more appealing content, such as audio and video.
As people are getting faster access at home, through DSL and cable modems, the demand
for high-quality content will increase. Also, as wireless devices, such as mobile phones
and PDAs, are becoming more popular, people will be able to access the Internet from
anywhere and at any time.

This ever-increasing demand for content places a high burden on the Internet infras-
tructure. The servers and network links must be able to accommodate the demand which
can be highly variable and unpredictable. Some content, such as major portal sites like
Yahoo [94], MSN [49], or Netscape [54], are constantly popular, and the site operator can
take steps to increase the availability of the site. Balancing the load over several servers
and installing higher capacity network links can greatly help in providing better and faster
service to user requests.

The major problem is the so-called hot-spots. These happen when some content sud-
denly becomes extremely popular, typically for only some period of time. Examples of
these hot-spots are major sporting events, other major news events, or releases of popular
software. All these events generate a high load on the server originating this content, but
it is hard to predict exactly how much capacity is needed. Sometimes the events are so
sudden, e.g., someone publishing a link to a web page on a discussion board and mem-
bers of the board all �ock to that page, overloading the server and saturating the links.
Handling these hot-spots is the major problem in Internet content distribution.

The basic solution, and on which all modern content distribution architectures are
based, is to replicate the content on several servers and have di�erent clients access di�erent
servers. This guarantees that the loads on the servers and network links stay manageable
and the users are able to get the content they want in a reasonable time. This presents
us with two problems. First, where and how to replicate the content, and second, how to
make sure clients are able to �nd the replicated content.

The focus of this thesis is on content distribution architectures. This thesis is in two
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parts. In the �rst part we address client redirection methods and in the second part we
address object replication strategies.

An e�cient client redirection should achieve two goals. First, it should balance the
load as evenly as possible on the set of available servers. Second, it should be easy to
deploy in practice. This second requirement turns out to be far stricter of the two, because
it typically requires that we cannot change the software on all clients. There is already
a wide base of installed software and it is not possible to force everyone to install a new
version of browser software to take advantage of the redirection features. This implies that
the redirection mechanism should insert itself transparently somewhere in the existing
request-response chain. An alternative approach is to use mechanisms which allow for
incremental deployment, such as the Location Data System which we present in Chapter 3.
The advantage of mechanisms which insert themselves in the request-response chain, such
as DNS redirection as practiced by modern content distribution networks, is that they are
immediately available to all clients. The disadvantage of these methods is that they are
not necessarily fully transparent to the user, and the user may experience even a loss of
performance.

Object replication mechanisms are closely tied with redirection mechanisms, after all,
when the objects have been replicated to several servers, we need to be able to direct clients
to these servers. Object replication is typically driven by the content provider or on behalf
of the content provider, hence it is possible to use more elaborate mechanisms which may
require changing even all of the existing server software. This gives us the possibility to
coordinate the placement of replicas and condition it on the available server and network
capacity, and prevailing client demands. Indeed, as we show in Chapter 6, coordinated
placement of object replicas provides the best performance, compared to methods which
try to act without coordination. Together with client redirection, object replication o�ers
us the possibility to spread the load over several servers, and allows for e�cient delivery
of content to the users.

In Chapter 2 we present an overview of how modern content distribution technologies
and architectures have evolved from the basic client-server architecture into the modern
content distribution networks. We will pay particular attention to how these technologies
have addressed the problems of redirection and replication � what are the advantages and
disadvantages of these solutions.

In the following we outline the major contributions of this thesis.

1.1 Thesis Contributions

This thesis makes several contributions. The �rst contribution (Chapter 3) is an architec-
ture for locating copies of objects. This architecture is based on extending the Domain
Name System (DNS) and allows clients to locate origin servers, mirrors, or caches which
hold a copy of the requested object. This architecture requires only minor extensions to
DNS and allows for incremental deployment. We also present methods which clients can
use to determine which of the available copies is "the best", i.e., can be downloaded the
fastest.



1.1. THESIS CONTRIBUTIONS 27

The second contribution (Chapter 4) is a new, replicated architecture for an Internet-
wide directory service. We also show how this architecture can be applied the Domain
Name System. The key novel feature of this architecture is that it allows us to store
rapidly changing information in the DNS. Currently, because of extensive use of caching,
the rate of change in the DNS is severely limited. Our architecture leverages satellite
and multicast communication technologies which, in addition to decreasing cost of hard
disk space, allow us to e�ectively replicate the entire DNS database on selected servers.
This provides us with the possibility of keeping rapidly changing information coherent in
all servers, and also signi�cantly decreases the DNS query latency. Our architecture is
completely transparent to legacy DNS clients and can be deployed incrementally with no
change to existing DNS software. We also perform an extensive performance analysis of
our architecture.

The third contribution (Chapter 5) is an evaluation of the redirection techniques used
in modern content distribution networks. Currently the content distribution networks use
DNS to redirect clients to content servers. We can distinguish two types of redirection
models � full and selective redirection. Using extensive simulations and experiments with
live servers on the Internet, we compare how these two redirection methods a�ect the over-
all user-perceived performance. Our results indicate that full redirection yields superior
performance because it avoids setting up new TCP connections which can severely degrade
the performance of the selective redirection method. Although this result may seem in-
tuitive, our contribution in this chapter is the quantitative, numerical evaluation of this
tradeo� and its e�ects on user-perceived performance.

As our fourth contribution (Chapter 6), we study object replication strategies in content
distribution networks. We formulate the problem of optimal placement of replicas as
a combinatorial optimization problem which we show to be NP-complete. We develop
several heuristics for determining the placements of the replicas and using real Internet
topologies, we evaluate the performance of our heuristics. Our results indicate that the best
performance is obtained when object replication is coordinated over the whole network;
strategies which operate only locally achieve inferior performance. We also develop a
cooperation model for peer-to-peer networks. Our evaluation shows that cooperation can
yield signi�cant bene�ts for the cooperating peers.

Our �fth contribution (Chapter 7) is a suite of algorithms for replicating and locating
objects in a peer-to-peer community. We distinguish between two types of communities:
content caches and content clubs. For both cases, we formulate the problem as an integer
programming problem which provides us with the optimal solution. We provide several
adaptive, distributed algorithms for replicating the objects on-the-�y and we evaluate their
performance through extensive simulations. We �nd that by combining our algorithms
with a distributed least-frequently-used replacement policy, we can achieve near-optimal
performance, both in terms of hit-rate and number of replicas. We also consider a modi�ed
version of the integer programming problem which extends the initial problem to include
constraints for balancing the load evenly over all peers.

As our sixth contribution (Chapter 8), we study the distribution of layered encoded
video through caches. We consider the two-resource problem of cache space and network
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capacity and using a stochastic knapsack model we formulate the problem of layered video
caching. In our model clients may request some number of layers from the video, depend-
ing on their network connectivity. Layered encoded video imposes us with the decoding
constraint, i.e., all lower layers need to be present to be able to decode and show a given
layer. We propose several heuristics for determining which layers of which videos should
be cached in order to maximize the accrued revenue. We evaluate the performance of our
heuristics through extensive numerical experiments. In addition, we also consider two in-
tuitive extentions, quality negotiations and request queueing, but our results indicate that
they have only a secondary e�ect on the overall performance. We also consider the case of
partial caching in the context where clients are only interested in full-quality videos. We
discover that in this case partial caching, i.e., caching only some lower layers of a video, is
not bene�cial and that in this case we should always cache complete videos.

1.2 Thesis Organization

This thesis consists of an introductory chapter which presents an overview of modern
content distribution technologies, six research chapters in two parts, and a concluding
chapter.

In the �rst part of this thesis, Chapters 3, 4, and 5, we focus on client redirection.
Chapter 3 presents the Location Data System. It is a system designed to inform clients
of copies of objects which exist in the network. Chapter 4 describes our architecture for
a replicated Domain Name System. We present an overview of the architecture, a perfor-
mance evaluation, migration strategies from the existing DNS, and consider security and
fault tolerance issues. Chapter 5 evaluates the performance of the redirection schemes used
by modern content distribution networks. Through extensive simulations and experiments
on the Internet, we evaluate the e�ects of redirection on user-perceived performance.

In the second part of this thesis, Chapters 6, 7, and 8, we focus on object replication.
Chapter 6 presents a model for optimal replication of objects in a content distribution
network, develops several heuristics, and evaluates their performance using real Internet
topologies. We also develop a cooperation model for peer-to-peer networks. In Chapter 7
we consider optimal content replication in peer-to-peer communities. We develop a model
which provides us with the optimal solution, and we present adaptive algorithms that
can be used to replicate content on-the-�y. Chapter 8 considers the problem of caching
layered encoded video. We present a model based on stochastic knapsack, develop several
heuristics, and evaluate their performance through extensive experiments.

Each of the six research chapters is self-contained and in addition to the main contribu-
tion, presents an overview of related work and future directions for that research. Finally,
Chapter 9 summarizes the results and contributions of this thesis.

1.3 Published Work

Chapters 3, 4, 5, 6, 7, and 8 have been published, or are currently in submission:
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Chapter 2

Overview of Content Distribution

In this chapter we will give an overview of content distribution on the Internet. The main
focus of this chapter, as well as this thesis, is on content distribution on the World Wide
Web (WWW or the Web). We will present an overview of modern content distribution
technologies and how they have evolved over the past few years. In addition to Web content
distribution methods, we will also present a new content distribution paradigm, namely
peer-to-peer content distribution.

In this thesis, the term content denotes any kind of content that is on the Internet
and is available to the public at large. This could be for example Web pages, MP3-�les,
program downloads, etc. For the most part, we assume this content to be relatively stable,
i.e., the content does not change much. If the content is being modi�ed actively, this
presents us with the problem of maintaining coherency of the content and assuring that
users never see stale content. In Chapter 4 we consider how to maintain coherency in a
replicated database when the information is changing rapidly.

We will use the term content provider to denote an entity (a company or an individual)
who provides content for others to download. We use the term user to denote the persons
who access this content. Typically content providers and users are di�erent, but in a
peer-to-peer network all users are also content providers.

2.1 World Wide Web

The World Wide Web has become one of the main channels for distributing information
in the world today. Most major companies and organizations operate web sites and people
often turn to the Web for �nding information or entertainment. The Web is also widely
used for commercial transactions, such as buying books, CDs, DVDs, or making travel
reservations. These transactions typically also require e�cient databases and secure trans-
actions for purchasing the desired items. Yet, there is still the need to deliver Web pages
to the users so that they can make their purchases.

The focus of this thesis is on distributing content from the content providers to the
people who want to access this content. We focus our studies on how this content can most
e�ciently be delivered, either in the shortest time, or using the least amount of resources.
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We do not address the problems of managing databases or conducting secure transactions
in this thesis.

The Web is a client-server architecture. Content on the Web is hosted on web servers

and is served using the HyperText Transfer Protocol (HTTP) [22]. Users use browser
software to access the content stored on the servers. Objects in the Web are identi�ed
by Uniform Resource Locators, or URLs [8], which identify the name or the server which
has the object, and also where on that server the object resides. Web pages are written
in HyperText Markup Language (HTML) [93] and can contain text, images, and links to
other web pages.

This makes the Web very easy to access for novice users and has been the main reason
behind the popularity of the Web. The increasing popularity has also caused many prob-
lems in the Web. Some content is more popular than other content and hence the majority
of requests are for the popular content. This puts a major load on both the servers serving
the popular content and on the network links leading to these servers. Upgrading the
servers or network links is not a feasible solution because millions of new users will want
to access that same content.

A widely used solution is to replicate the contents of a server on another server, called
mirror server or mirror for short. The content on the mirror is identical to that on the
main server, so users can access either one and get the content they want. The problem is
informing users of the existence of these mirrors. Typically the main server has a list of
mirrors and the user must manually select one every time he visits the site (unless he stores
the address of the mirror in a bookmark). Users are not always aware of the existence of
these mirrors and may not be savvy enough to know why they should select one of them.
Also, handling multiple mirros may be demanding for the administrator of a server because
he needs to ensure that the content on the mirrors is up-to-date.

The problem of content distribution arises from the ine�ciencies of the client-server
architecture which is unable to handle the demands on the Web. In the following we will
present how the technologies have evolved to combat this problem.

2.2 Proxy Caching

The �rst solution was to place a caching proxy1 at the client site. This setup is show in
Figure 2.1. In this setup the client sends its request to the caching proxy which checks if
it has the requested object in its cache. If it does, it can return the object directly to the
client and avoid contacting the server (also called origin server) which can be far away in
the network. If the caching proxy does not have the requested object, it will download it
from the origin server, deliver it to the client, and cache a copy of the object.

Typically there are several users behind a single caching proxy, for example, an institu-
tion (university or company) or an Internet Service Provider (ISP) would install one proxy
for all of its users who would access the Web through this proxy. This creates a large user

1The terms proxy cache, caching proxy, and proxy are used interchangeably in this thesis for a caching

proxy [14]
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Figure 2.1: Client, Proxy, and Server

community and because popular content tends to be accessed by many people, the cache
on the proxy is able to satisfy many requests and reduce the download times for the users,
reduce bandwidth usage for the institution, and reduce load on the origin server.

A cache hit is a request from a client that the proxy served from its cache. A cache

miss is a request which the proxy was not able to serve from the cache. Cache misses
can occur either because the requested object simply was not in the cache, or because the
cached copy was not valid anymore. An important metric for evaluating the performance
of a caching proxy is the hit-rate (also known as hit-ratio or hit probability). Hit-rate is
de�ned as

HR =
# of requests served from cache

total number of requests
: (2.1)

In a similar manner, we can de�ne the byte hit-rate which is the ratio of bytes served
from the cache as cache hits to the total number of bytes that have passed through the
cache. Because the object sizes on the Web vary signi�cantly, maximizing hit-rate does
not typically maximize byte hit-rate and vice versa.

Because the cache is of a limited size, we can only store a subset of the objects seen by
the cache. When the cache is full and we want to store a new object, we need to evict one or
more objects from the cache. The replacement policy of the cache determines which objects
are evicted. There has been a considerable amount of research in Web cache replacement
policies, see [33, 92] and references therein. In practice, the most widely used replacement
policy is the least-recently-used (LRU) replacement policy which is also widely used in
virtual memory systems in modern operating systems [84]. LRU is also the default policy
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in the freely available Squid caching proxy [81]. Even though other replacement policies
in some cases achieve higher hit-rates, LRU is generally considered to perform su�ciently
well.

Using caching proxies the popular content is always automatically stored (or replicated)
near where it is needed. Because caches may evict objects, this is di�erent from mirrors
which typically are permanent and stable copies. To use the caching proxy, users need
to con�gure their browser software, or the administrator of the institution can install an
intercepting proxy2 [14] which intercepts all user requests and directs them to the cache.
Hence, the redirection to the cache may not happen always and users typically have the
possibility of forcing the cache to load the page from the origin server.

2.2.1 Caching Hierarchies

Even though caching proxies are useful and e�cient for pooling the users of a single ISP or
institution, they can cover only a relatively small user population. Consider for example
users in a European country wanting to access content in the US. Each user goes through
his local caching proxy, but if the requested object is not there, the proxy will contact
the origin server in the US. This means the for every miss, each proxy must go over the
expensive transatlantic link to retrieve the content.

Caching hierarchies attempt to alleviate this problem by having the institutional proxies
contact other proxies before contacting the origin server. Figure 2.2 shows an example of a
caching hierarchy. In Figure 2.2 we have four caches I1, I2, I3, and I4 at the institutional
level, for example in universities or dial-up ISPs. The institutional caches connect to
regional caches R1 and R2 which, in turn, connect to the national cache N . (The hierarchy
in Figure 2.2 has three levels, institutional, regional, and national, but in reality there may
be more or less levels.) Such nation-wide caching hierarchies have been deployed in several
countries, for example in France [68] and in the US [52].

Client requests in caching hierarchies proceed as follows. Suppose a client under the
institutional cache I1 wants to request an object which resides on some origin server. First,
the client sends its request to I1. If I1 has the object cached, it will return it to the client
(after possibly verifying that the cached copy is still valid). If I1 does not have a copy, it
will send the request to R1. If R1 has a copy, it will return it to I1 which will send it to the
client and cache a copy locally. If R1 does not have a copy, it will send the request to the
national cache N . If there is a miss at N , the national cache will retrieve the object from
the origin server, cache a copy, and pass it down to R1. As objects are requested through
the hierarchy, copies are automatically created along the path. If another client under I1
requests the same object, I1 is able to satisfy the request from its cache. Likewise, if a
client under I2 requests the same object, the request will only have to traverse up to R1

which has a copy of the object.
In addition to having the proxies form up a strict hierarchy, they can also cooperate

2The term transparent proxy is also widely used because the user does not need to con�gure the browser.

From a networking point of view, these proxies are not transparent because they can change the semantics

of the requests.
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Figure 2.2: Caching hierarchy

in other ways. For example proxies I3 and I4 in Figure 2.2 could form a group and every
time a either of the two has a miss, it would query the other proxy for the object. In this
manner, if any of the group members has the object, the requesting proxy would retrieve
the object from it, instead of contacting the origin server. There are several protocols, such
as Internet Cache Protocol (ICP) [91] and Cache Digests [73], that have been developed
for cache cooperation.

Caching hierarchies automatically replicate the most popular content near the users
and the moderately popular content higher up in the hierarchy. Caching hierarchies can
be seen as a form of asynchronous multicast [70] because, ideally, each objects traverses a
given link only once, although object replacement in practice may a�ect this. Redirection
happens as with the institutional caching proxies, that is, either users must con�gure their
browsers or we have to use intercepting proxies. To build the caching hierarchy, the cache
operators at di�erent levels have to agree on who can access content through their caches.
Because such hierarchies have typically been funded through research organizations, use
of these hierarchies has widely been allowed.

One main problem with a caching hierarchy is that it may introduce a signi�cant
additional latency to requests. If a client requests an unpopular object which is not cached
in any of the caches, the request will still have to traverse all the way up in the hierarchy
before the root cache sends the request to the origin server. This latency may be increased
by protocols such as ICP which, in the worst case, may impose an additional 2 second
delay at each step in the hierarchy. Also, there are no guarantees that the caches higher
up in the hierarchy are any closer to the origin server. This is typically handled by �ltering
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which requests are sent up in the hierarchy. For example, the national cache would only
see requests for objects that are located (as indicated by the URL) in other countries.

2.2.2 Problems with Client-side Caching

Installing caching proxies on the client-side, whether a simple institutional proxies or a
caching hierarchy, has not been without problems, however. The main problem with this
approach is that the content provider has no control over the content once it has been
retrieved from the origin server and placed into the caches. The content provider has no
good way of ensuring that if the content changes, then all users would always get the new
content. There are some simple mechanisms to inform caches about the content, such as
the Expires-header or cache control mechanisms of HTTP/1.1, but these have never been
widely deployed.

In the absence of reliable information about the object, caching proxies have resorted
to heuristics to determine how long they can consider the cached object valid. One such
heuristic considers that if the object has not been modi�ed in a long time, it is unlikely
to be modi�ed in the near future and hence it can be cached for a long time. This is the
heuristic programmed into the freely available Squid proxy cache [81].

In order to avoid the problem of caches delivering stale, or out-of-date content, some
content providers have resorted to marking all of their content as non-cachable so that the
caching proxies would not store it. This solution, while e�ective at solving the problem of
stale content, defeats the purpose of installing caches because they cannot store content
anymore. This problem was the primary motivation behind the development and success
of content distribution networks (CDN) which we will present in the next section.

2.3 Content Distribution Networks

In early 1999 and in the years since, several companies have started to operate their content
distribution networks or CDNs. These companies include Adero, Akamai, Digital Island,
Mirror Image, and SandPiper [2, 3, 16, 43, 76]. This new model of content distribution has
become very popular among the large content providers.

Figure 2.3 shows the architecture of a CDN. A CDN makes agreements with the content
providers (O1, O2, and O3) to distribute their content to the users. The CDN operates
content servers (C) that are typically placed near the users, for example at the dial-up
ISPs. The user requests are redirected to these content servers which are able to serve
the content fast. The internal network of the CDN connects the origin servers and content
servers and is used to transfer content from the origin servers to content servers (or moving
content from one content server to another).

The main di�culty in creating a CDN is redirecting the clients to the content servers.
Ideally, one would want this to be completely transparent to the clients so that no modi�ca-
tions to client software is needed. Modern CDNs achieve this by manipulating information
in the Domain Name System (DNS) and in the following we present the two methods
currently in use. Chapter 5 presents a detailed study of the performance of these two
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Figure 2.3: Content distribution network

schemes.
Because CDNs charge a high price for their services, they are mostly applicable to larger

companies wanting to distribute their content. Individuals or small organizations would
typically not be able to a�ord the services of a CDN, hence they would have to rely on
client-side caching to help distribute their content. CDNs are therefore not a replacement
to the traditional client-server model or client-side caching, but a complementary approach
which allows for e�cient delivery of very popular content to a large number of interested
users.

2.3.1 Full Replication

In the full replication scheme the CDN takes control of the DNS mapping of the content
provider's server, say www.example.com. When a client wants to request an object from
this server, it �rst has to do a DNS lookup on www.example.com to get the server's IP
address. The information in the DNS system for the domain example.com points to a
nameserver in the CDN's network. When this nameserver receives the client's DNS lookup
request, it determines which content server is the best placed to handle this request and it
returns the IP address of that content server as the IP address of www.example.com. When
the client receives the DNS reply, it will attempt to connect to the content server. Because
the content server is closer to the client than the origin server, the client will receive the
requested object much faster.

The downside of this approach is that each content server must be able to handle all
requests for the content provider's origin server. This implies that either each content
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server fully replicates the contents of all content providers with which the CDN has passed
an agreement, or that the content server acts as a surrogate proxy [14].

The bene�t of this mechanism is that all client requests are always sent to the content
servers. We will study this issue deeper in Chapter 5.

2.3.2 Partial Replication

In the partial replication scheme, only a subset of the objects on the content provider's
origin server are placed on the content servers. Client redirection goes as follows. The client
retrieves the home page from the origin server www.example.com. This page may contain
references to images which have been placed on the content servers. The URLs of these
images have been changed, for example the URL http://www.example.com/title.gif

could become http://www.cdn.net/example/title.gif. From the client's point of view,
this image looks like any normal image, except that it has to open a connection to a
new server. When it opens this connection, it has to perform a DNS lookup to get the
IP address and this DNS lookup is handled in the same way as above. The client gets
redirected to a nearby content server and asks it for the image.

The bene�t of this mechanism is that only objects that need to be replicated are placed
on the content servers, thus reducing the storage requirements. But the downside of this
mechanism is that someone, typically the content provider, has to decide which objects
are to be replicated. This means that the system as a whole is slow to react to hot-spots
which may occur when some content on the origin server suddenly becomes extremely
popular. Also, the cost associated with opening a new connection to the content server is
non-negligible, as we show in Chapter 5.

One weakness that is shared by both replication mechanisms is that the redirection
decisions are based on the IP address of the machine which sent the DNS lookup request.
This is typically the nameserver for the client and may or may not be topologically close to
the client. The e�ectiveness of DNS-based server selection has been studied in more detail
in [79]. Their results indicate that especially for dial-up users, the cost of DNS redirection
can be very high.

2.4 Peer-to-Peer Networks

The latest development in content distribution is peer-to-peer networks. The �rst peer-
to-peer network was Napster [51] which allowed users to share MP3-�les with each other.
The main application for peer-to-peer networks has been �le sharing, in which users make
some �les available on their computers and others can download these �les. In order for
users to be able to �nd out which users are o�ering which content, the network needs some
kind of a lookup service which maps object names into the machines serving these �les.
Below we will discuss some possible approaches for building such a lookup service.

What sets peer-to-peer networks apart from the traditional forms of content distribu-
tion, caching and CDNs, is that in a peer-to-peer network every node is both a client and
a server. However, studies have shown that in reality, most of the content in a peer-to-peer
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network is served by a small minority of users and a large number of users do not o�er
any �les [1]. Regardless of this, peer-to-peer networks have become extremely popular for
sharing �les between users.

The main problem faced by Napster was not technical, but legal. Napster was made
to share only music encoded in MP3-format and most users used it to share and retrieve
copyrighted music without permission from the copyright owners. This prompted a long
legal battle between Napster and record companies and as a result Napster was forced to
shut down3.

Regardless of this problem, Napster had showed the advantages of the peer-to-peer
content distribution model and several new systems and protocols have been developed, for
example, Gnutella [28], Freenet [23], FastTrack and Morpheus [21,48], and MojoNation [47].
There has also been considerable interest in the research community shown by the large
number of peer-to-peer projects, such as CAN [63], Chord [83], Pastry [75], Tapestry [95],
OceanStore [39], and FarSite [20]. We will review these projects in detail in Chapter 7.

We will now present the main approaches for building a lookup service for a peer-to-peer
network, namely centralized, distributed, and hybrid.

2.4.1 Centralized Architecture

Figure 2.4 shows an example of a centralized peer-to-peer architecture. The centralized
architecture requires that some central authority operates a single central server. (This
server would typically be a server farm, but the users would see it as a single server.) This
central server is responsible for answering the queries, hence all the query tra�c is directed
to it.

The lookup service in Napster was based on a centralized architecture. When a user
wanted to locate an object, the Napster software would contact a server, operated by
Napster, that kept track of who was online and which �les each user was sharing. The
central server would perform a simple keyword search with the search terms given by the
user, and would return a list of potential matches. The user would see this list and would
have to choose one peer from whom to download the �le. The list would include hints,
such as other peers' network bandwidth and round-trip times, to help users choose peers
which are close-by or well connected. However, these hints were not veri�ed, and any user
could indicate any connection bandwidth he desired. The actual �le transfer would happen
directly between the peers and not via the central server.

The main drawback of this architecture is that the central server becomes a potential
bottleneck and is a single-point of failure. Using a server farm we can overcome the
bottleneck problem, but if all the servers are co-located, a single network failure could take
out all the servers. The servers can be geographically dispersed and peers redirected on
them based on some criteria, but in this case the quality of service obtained by the peers
depends on which server they happened to be redirected. In this model, each peer would
have to register with the central server when the software was installed, and also to notify
the central server when the peers goes up or down, and which �les it has.

3Napster has recently started its services again, using a subscription based model.
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Figure 2.4: Centralized peer-to-peer network. Dashed lines show query tra�c and solid
lines show how objects are transferred.

The advantage of this model is that the queries are simple to perform and they do
not consume much network resources. Each client request results in one query message,
from peer to central server, and one longer response, the list from the central server to the
requesting peer.

2.4.2 Distributed Architecture

The other main lookup architecture used in peer-to-peer networks is a distributed archi-
tecture, such as the one used in Gnutella [28]. Figure 2.5 shows a distributed peer-to-peer
network. The main advantage of a distributed architecture is that all peers are equal and
no peers hold any permanent information about which objects are stored where; also there
is no directory of the peers which are a part of the network.

When a user wants to join such a network, he must typically �rst obtain the IP address
(or hostname) of a peer that is already a member of the network. This could be achieved
through some well-known bootstrap nodes and the peers can obtain their addresses either
from the DNS (the approach in CAN [63]) or simply with out-of-band methods, such as
publishing the addresses of bootstrap nodes on a web page. Note that there can be one or
more such bootstrap nodes. Also, as is the case in Gnutella, each peer can also serve as a
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Figure 2.5: Distributed peer-to-peer network. Dashed lines show query tra�c and solid
lines show how objects are transferred.

bootstrap node, but this still requires that the new peer is able to obtain the address of at
least one peer in the network.

The �rst peer-to-peer network to use the distributed architecture was Gnutella and
when a Gnutella-peer wants to retrieve an object, it queries as follows. The requesting
peer has some number of neighboring peers in the peer-to-peer network4. It sends its
query to all of its neighbors. If a neighbor has the requested object, it will reply to the
requesting peer and inform it that it has a copy. If a neighbor does not have a copy, it
will, in turn, send the same query to all of its neighbors, excluding the neighbor who sent
the original query.

This way the query eventually propagates to all peers in the network and the requesting
peer is able to �nd out if any peer has a copy of the object. This also means that every query
needs to be �ooded to all of the network which puts a considerable strain on it. Gnutella
attempts to alleviate this �ooding problem by using a limit (time-to-live, or TTL) on how
many times a query can be forwarded. This TTL is set by the requesting peer, hence a user
can increase it if a query did not �nd the object. If some user sets this TTL very high, he
could receive potentially thousands of replies which could clog up his network connection.
Hence, users will learn, through trial-and-error, what is the best setting for this TTL.

4Neighbor relations in the peer-to-peer overlay network do not imply that the two peers are near each

other in the actual network topology.
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Because the query might not propagate to all peers, it is possible that a request ends in a
failure, even though the object is available from some peers. In the centralized architecture
this is not possible, because the central server is aware of all objects in the network.

Most of the current research on peer-to-peer networks has been aimed at improving
query performance in distributed peer-to-peer networks [63, 75, 83]. We will review these
projects in more detail in Chapter 7.

2.4.3 Hybrid Architectures

FastTrack [21] and Morpheus [48] use a hybrid architecture for querying. This hybrid
architecture attempts to strike a balance between the accuracy of the centralized archi-
tecture and the lower load of the distributed architecture. In the Morpheus architecture,
some peers have been designated as supernodes by the bootstrap node. Normal peers are
assigned a supernode by the bootstrap node. When a peer wants to request an object, it
sends its query to its supernode. Each supernode maintains a directory of all the objects
in the peers under it; this provides for Napster-like behavior within the peers under a
supernode. The supernode can also forward the query to other supernodes which reply
directly to the requesting peer and send the addresses of peers under them which have the
requested object. This provides for a wide coverage, like Gnutella, but with considerably
less resources.

There have not yet been any studies that would have compared the performance of the
hybrid architecture with that of the centralized or distributed architectures.

2.5 Conclusion

This chapter has presented an overview of how content distribution technologies have
evolved on the Internet in the past few years. Starting o� with the basic client-server
model, the �rst step was client-side caching. This was initially implemented with caching
proxies, installed locally at ISPs or institutions, and later on these caches were used to
create caching hierarchies. Client-side caching did not, however, allow the content provider
any control over how the content would be cached. Content distribution networks emerged
to remedy this problem and they have become the de-facto content distribution method
for most commercial web content. Finally, we also presented a new content distribution
paradigm, namely peer-to-peer networks. These networks di�er from the traditional model
in that each peer in the network is both a client and a server. We also presented di�erent
architectures for building a lookup service for a peer-to-peer network.
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Chapter 3

Locating Copies of Objects

3.1 Overview

In order to reduce average delay and bandwidth usage in the Web, geographically dispersed
servers often store copies of popular objects. For example, with network caching, the origin
server stores a master copy of the object and geographically dispersed cache servers pull
and store copies of the object. With site replication, objects stored at master are replicated
into secondary sites. In this chapter we propose a new network application, Location Data
System (LDS), that allows an arbitrary host to obtain the IP addresses of the servers
that store a speci�ed URL. Our networking application is an extension to the Domain
Name System (DNS), requires only small changes to the domain name servers, and can be
deployed incrementally. For the case of network Web caching, we elaborate on our proposal
to allow a cache to (i) update a distributed database when it stores or evicts objects, and
(ii) push objects to parent caches in order to improve delay and bandwidth usage. For the
case of mirrored servers, we show how a client can obtain a list of all servers mirroring all
or part of the desired site. LDS applied to partially mirrored sites generates substantially
less DNS tra�c than LDS applied to caching. Finally, we discuss how a host can use the
location data in order to make intelligent decisions about where to retrieve desired objects.

3.2 Introduction

Network caching of documents has become a standard way of reducing network tra�c
and latency in the Web. Caches are currently employed in institutional, local, regional
and national ISPs. Cache hierarchies, created when caches in lower-level ISPs point to
caches in higher-level ISPs, are currently prevalent in the Internet [52, 68]. Today's cache
hierarchies use static, manually con�gured pointers to de�ne the hierarchy tree. Cache
hierarchies operate as follows. When a browser requests a document, it sends a request to
a leaf cache. This cache then either serves the document (if it is cached) or forwards the
document to its parent in the hierarchy. The process is repeated along a static chain of
caches until the root of the hierarchy is reached. If there is also a cache miss at the root,
the root forwards the request directly to the origin server. A response is returned along

45
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the cache chain in the reverse direction. Cooperating caches in cache hierarchies often use
ICP (Internet Cache Protocol) to improve and enlarge the scope of the search [91].

Caching hierarchies have several problems. First, requests for less popular documents
will experience misses at all caches in the cache chain. For deep hierarchies, these misses
lead to poor latency performance [85]; moreover, ICP can further degrade performance,
since the cache must wait for a reply from all sibling and parent caches or until a two
second timeout before proceeding up the hierarchy. Second, today's caching hierarchies
are static � they do not permit a browser or a cache to choose the subsequent cache
according to current topology or tra�c conditions. Manual optimizations, such as sending
requests for certain top level domains to designated parent caches, are possible, but even
with these optimizations, the hierarchy for a given URL remains static. Third, caching
hierarchies do not allow the chain of caches to extend beyond the root cache; if there is
a miss at the root server, the request is forwarded directly to the origin server, and never
to a cache that lies somewhere in between the root server and the origin server. This is a
problem because a cache nearby the origin might be able to serve an object much faster
than the origin server, especially when the origin server runs on a slow machine or has a
low bandwidth connection.

In this chapter we propose a new cooperative caching scheme that has the following
features. (1) At most two servers (including the origin server) are visited in the request
chain; (2) The chain of caches depends on the requested URL and can change dynamically
as a function of current network topology and tra�c conditions; (3) An arbitrary cache in
the Internet can be queried, including a cache that is far from the browser but close to the
origin server. (4) The scheme can be incrementally deployed with minor changes to DNS
servers. Furthermore, although a thorough performance study is still required, we feel the
scheme should lead to a substantial reduction in delay and network tra�c as compared to
traditional hierarchical caching.

Our caching scheme makes use of a new network application, the Location Data System
(LDS), which we also de�ne in this chapter. The LDS, de�ned as an extension of DNS,
allows an arbitrary host to obtain the IP addresses of the servers that store a speci�ed
URL. The LDS is of independent interest, and can be used for other applications, including
choosing the best mirrored site for a given URL. For the case of network Web caching,
we specify how a cache updates the LDS distributed database when it stores and evicts
objects, and how a cache pushes objects to parent caches in order to improve delay and
bandwidth usage.

We recognize that LDS applied to Web caching signi�cantly increases the number of
DNS messages. In this chapter we also show how LDS can be applied to replicated and
partially replicated servers. In this case, the amount of DNS messages does not increase.

This chapter is organized as follows. In Section 3.3 we de�ne the LDS. In particular,
we show how DNS can be extended to provide the LDS service. In Section 3.4 we show
how network caches can exploit the LDS; in particular, we discuss how the caches update
the LDS distributed database, and how caches at higher levels in the caching hierarchy
can be populated. In Section 3.5 we show how document and site replication can exploit
the LDS. In Section 3.6 we discuss how a host can make routing decisions based on the
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results of an LDS query. In Section 3.7 we discuss related research on cooperative caching.
Section 3.8 presents directions for future work and Section 3.9 concludes the chapter.

3.3 Location Data System (LDS)

Copies of an object, with each object referenced by the same URL, are often available
from di�erent servers in the Internet. These servers include origin servers, replicated
servers (also called mirrored sites) and cache servers (also called proxy servers). The
origin server for an object is the server at which the object originates; it always contains
an up-to-date copy of the object. A replicated server contains copies of objects that have
been placed into it (typically manually or by pulling); typically, objects in replicated servers
are up-to-date. A replicated server may replicate entire Web sites or may replicate only
portions of various Web sites. Cache servers obtain copies of objects by pulling them on
demand. In particular, when a cache server receives a request for an object, and if the
object is not cached, the cache server retrieves the object from another server (which may
be the object's origin server, a replicated server, or another cache server), stores a copy of
the object, and forwards a copy to the requestor. A cached copy of an object may not be
fully up-to-date. In this chapter we refer to all three types of servers as object servers.

It is highly desirable for a host in the Internet to be able to determine the locations
(i.e., the IP addresses) of all the object servers that contain copies of a speci�ed URL. In
particular, a host would like to be able to give a network application a URL and receive
from the application a list of all the object servers that contain the URL. In addition to
receiving the IP addresses of all the servers that contain the object, it is desirable to receive
information about the freshness of each copy, e.g., when each copy was last modi�ed or
the �age� of the object (as de�ned in the HTTP/1.1 [22]).

In this section we outline a new networking application that provides the service of
mapping a URL to a list of object servers that contain the URL, with each server on the
list having associated freshness information. We refer to this system as the Location Data
System (LDS). We have taken a rather pragmatic approach in designing the LDS. Our
principle goal has been to design a system that can be rapidly deployed with incremental
changes to the existing Internet infrastructure. A second goal is scalability, i.e., a system
that is decentralized and hierarchical. A third goal is performance, that is, a system that
quickly returns the location data while injecting a minimum of overhead tra�c into the
network.

Figure 3.1 shows the basic mapping service provided by LDS. In the �gure, the client
on the left has a URL, it gives it to the LDS system which returns a list of object servers
that contain the object. Instead of the whole URL, the client can as well give only a pre�x
of the URL to the LDS black box which then returns a list of object servers that contain
URLs matching the pre�x. In the simplest case, the pre�x is only the hostname of the
URL; in this case, the LDS service is identical to the Domain Name System, operational
in the Internet for over 20 years.

Given the similarities in the service provided by both DNS and LDS, we have decided
to base the design of LDS on DNS. In fact, LDS can be implemented by making minor
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Figure 3.1: LDS service

extensions to BIND name servers and to the DNS protocol. Recall that DNS provides a
mapping of hostnames to IP addresses. (DNS can return more than one IP address for
a hostname for mirrored sites.) DNS uses a hierarchy of name servers to implement a
distributed database of resource records, whereby a resource record contains a mapping.

We now present an overview of the LDS design; we provide more details in the subse-
quent subsections. As does DNS, LDS uses a hierarchy of servers to implement a distributed
database of resource records. We refer to the LDS servers as location servers. Each LDS
resource record maps a URL to an object server, with associated freshness information.
Each URL has one (or more) authoritative location servers (To convey the main idea, we
initially assume that each URL has exactly one authoritative server.) The authoritative lo-
cation server contains a list of resource records for the URL, that is, a list of object servers
that contain the URL (along with the freshness information). Other location servers may
contain cached copies of the list of resource records. In our basic design, hosts query lo-
cation servers in a manner that is fully analogous to the DNS protocol. The sequence of
query and reply events is illustrated in Figure 3.2.

In Figure 3.2, C is the querying host (e.g., a browser), O0 is the origin server for the
queried object, machines O1�O4 are other object servers (e.g., caches), and machines L1�L4

are location servers.
The querying host sends a location query to its local location server (L1). If L1 does

not have the location information cached, it sends a query to a root location server
(L2). If L2 does not have the location information cached, it returns the address of a
location server responsible for the domain of the origin server in the query (L3). L1 sends
a new location query to L3 and if L3 does not have the location information, it returns
the address of the authoritative location server (L4). Finally, L1 queries the authoritative
location server and receives the location information. Location server L1 then sends the
information to the querying host and also caches the information. (In this example we
assumed that all queries between LDS servers are iterative; recursive and combinations of
recursive and iterative can also be used. Like DNS, LDS is not based on either query type
being used. We also assumed that there is one intermediate location server between the
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Figure 3.3: Representation of a URL

root and authoritative servers; in practice there can more or less.)
Suppose that the reply indicated that object servers O0, O1, and O3 contain copies of

the URL. The querying host then chooses to retrieve the URL from one of these object
servers. Ideally, the host chooses the object server that will deliver the object the fastest.
(We will discuss how this choice might be made in Section 3.6.)

Given the similarities between our basic design of the LDS and the DNS, we now address
whether the LDS can implemented in the existing DNS, or within a slightly extended DNS.
A DNS implementation could lead to rapid deployment of the LDS.

3.3.1 Resource Records, Query Messages and Reply Messages

For location requests a new DNS resource record type is needed. It is similar to the standard
A-type resource record, which maps a hostname to an IP address. We now describe this
new DNS resource record type.

Each resource record of this type must contain an object identi�er. In order to be
compatible with standard DNS queries, object identi�ers must be encoded in a standardized
way. Using this encoding, the query appears like a normal DNS A-query and can be resolved
without changing any parsing routines in DNS servers. Figure 3.3 shows how the URL
http://www.eurecom.fr/�bob/index.html would be encoded.

This encoding allows for e�cient compression of identi�ers sharing a common part, just
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as when querying the addresses of all of the servers in a given domain. Since the identi�er
can be viewed as a generalized hostname, all the normal facilities of DNS can be used.

We mention that there is a 255 character limit on hostnames in DNS queries which
implies that URLs longer than 255 characters will have to be truncated. Also, the length of
a single label (e.g., one component of hostname or URL path) is limited to 63 characters.
We do not expect these limits to be a problem. We also mention that URLs are case-
sensitive but DNS does not guarantee case-sensitive treatment. Nonetheless, we do not
expect this to be a major issue since most URLs cannot be confused with other URLs even
if case is not preserved.

We studied the access log from one of the NLANR top-level caches and out of the
1.1 million URLs in the �le, only 122 exceeded these limits. Even if these 122 URLs
were truncated to conform to DNS limitations, we did not observe any collisions between
two di�erent URLs. Neither did we �nd any URLs where case-insensitivity would have
presented any problems. Therefore, we do not propose any methods for handling such
URLs beyond simple truncation.

The reply will include several resource records, one for each object server holding a copy
of the URL. Each of these resource records has a time-to-live (TTL) �eld which speci�es
how long that resource record can be cached at a DNS server. This TTL-information can
either be speci�ed by the authoritative location server or, for a better estimate, by the
object server. If the location server sets this TTL-�eld, it will be the same for all resource
records from that server. If, on the other hand, this �eld is set by the object server, it
allows the object server to communicate information on how long the object is likely to be
available at that server.

The actual data section of the resource record (RDATA) contains the IP-address of the
object server and some freshness information about the object. This information could
be for example the last modi�cation date of the object, which provides an easy way of
distinguishing between possible stale copies of the object. In this case, the authoritative
location server would have to periodically query the origin server to get an up-to-date
modi�cation date for the original object.

Another possible piece of information that could be included in the resource record,
instead of the last modi�cation date, is the �age� of the object, as de�ned in HTTP/1.1.
An object server could determine this locally, and a small age would refer to a relatively
fresh copy. This method would not, however, o�er the same guarantees on object freshness
as would the last modi�cation date.

Yet another possibility is to include simple TTL-information, but this would be re-
dundant, since the resource record by de�nition includes a TTL-�eld. A TTL-estimate
is useful when the querying host decides which object server to use. Object servers with
short expected TTLs can be discarded from the decision making process.

Because all location servers are allowed to cache LDS replies, some location servers may
have stale location information in their caches. When the status of an object changes at
an object server, the object server noti�es the authoritative location server. This update
is not, however, re�ected on the cached copies of the location information. If stale, cached
location information is delivered to a querying host, the querying host may decide to
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forward the request to a Web cache that has evicted the object.
One solution is to use the only-if-cached directive of HTTP/1.1 when requesting

objects from Web caches. If the distant cache has the object cached, it will return the
object from the cache; otherwise it will return an error to the querying host indicating
that the object is no longer cached. The querying host will then choose another object
server from the list. We are currently looking into ways of reducing the amount of stale
location information in LDS.

3.3.2 Updating the Location Servers

The object servers need to keep the information at the authoritative location server up-
to-date. For this we need a new protocol that is used to exchange information about new
copies of objects. For example, when a cache caches a new object, it must send a message
to the authoritative location server responsible for this object, indicating that the object
has been cached. This message should also include the information which will be present
in the resource record (e.g., last modi�cation date) as well as a TTL-estimate. Similarly,
when the cache removes an object, it must send a message to the location server indicating
that the object is no longer cached.

Since the location data is managed over DNS, the dynamic update facility of DNS [87]
can be used to dynamically update the location information. With this method, it is
possible for a host to add or delete resource records atomically in an authoritative server.
The host can specify update prerequisites if desired.

Using the dynamic update facility of DNS, an object server sends an update message
every time the status of the object changes. For a Web cache this change of status could be
the caching of a new object, a removal of an object or caching a new version of the object
after the object has been modi�ed at the origin server. In order to reduce the amount of
update tra�c, object servers can send their reports in batches. This is especially bene�cial
for Web caches that can send the information about an HTML page and all inlined images
in one message, thereby reducing the overhead considerably.

3.3.3 Implementation

Implementing the LDS is relatively straight-forward and can be done incrementally. Since
the system is an extension to DNS, no new servers need to be created and introduced.

For a DNS server to be LDS-capable, it needs to be able to interpret a new query type
code and the associated resource records. DNS already handles numerous di�erent query
and resource record types, so adding one more is simple. Furthermore, the authoritative
server has to be able to maintain the location information database and construct resource
records from this database to include in replies to queries. Although this URL database
contains more data than a normal DNS database, it can be maintained in a similar way.
For a Web cache to be LDS-capable, it simply has to be able to send the update messages
to the authoritative server.

The architecture allows for incremental deployment, since if a content provider does
not operate a location server, no LDS resource records will exist. If no LDS resource
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records are available, the querying host would forward all requests using a static policy,
for example, forwarding them directly to the origin server or a parent in a cache hierarchy.
If LDS records exist, then LDS-enabled clients could use them to provide a better service
for users. Non-LDS clients would again use the normal, static methods for �nding objects.
In the early phases of deployment, the traditional hierarchy should be kept as a fallback
for clients and servers that do not implement the new protocols.

3.4 Network Web Caching

In this section we propose a new cooperative caching scheme that exploits the LDS. We
assume that browsers forward their requests through a proxy cache in addition to the
browser cache. This method is currently widely used by ISPs and other institutions, such
as companies and universities, to o�er a better service to their clients as well as to reduce
the out-going tra�c. Also, if a �rewall is used, then all requests must go through a proxy
at the �rewall in any case, so adding a cache there does not present a signi�cant overhead.

We now describe our cooperative caching scheme. A browser �rst sends an HTTP
request for an object to its proxy cache. If the proxy cache does not have the object, the
proxy cache invokes LDS to obtain a list of all the object servers (i.e., origin server and
some other caches in the network) that contain the object. The proxy cache then chooses
the �best� object server from the list and forwards the HTTP request to this object server
(see Section 3.6). The proxy receives the object from the best object server and forwards
the object to the browser.

Our caching scheme has several appealing features. First, at most two servers are visited
to retrieve an object. Standard hierarchical caching schemes (such as NLANR [52] and
Renater [68]) can cause requests to pass through a large number of object servers before a
copy of the object is found, which can severely increase object retrieval time [85]. Second,
the scheme allows the proxy server to choose from all the object servers that contain the
object. Let us look at a couple of scenarios:

� LDS returns a list of object servers, with one cache server in a neighboring ISP of the
ISP that contains the proxy cache, and all the other object servers on more distant
ISPs. In this case, the proxy server would choose the cache in the neighboring ISP.

� LDS returns a list of object servers, with one cache server on the same continent as
the proxy server, and all the other object servers on the other side of transoceanic
links. In this case, the proxy server chooses the cache in its continent.

� LDS returns a list of object servers, with all the object servers far from the proxy and
near or in the origin server's ISP. In this case, the proxy may still prefer to choose
one of the caches over the origin server: The origin server may run on a slow machine
or have a slow network connection.

It is important to note that traditional hierarchical caching does not permit the last option.
With hierarchical caching, if there is a miss at the root cache, the root cache forwards the
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request directly to the origin server. Thus our scheme enables the proxy to select from all

caches that are on the �route� between the proxy and the origin server.
Our caching scheme does have an unusual peculiarity. In the scheme just described, the

proxy server will always retrieve an object either from the origin server or from some other
proxy server. Because all the proxy servers are near the bottom of the Internet hierarchy
(in institutional ISPs or local residential ISPs), with the exception of the origin server, all
copies of an object are stored, essentially, in the leaves of the Internet. There are, however,
several compelling reasons to also store copies of objects higher up in the Internet hierarchy,
in particular in regional and national ISP caches. First, the requesting proxy may be able
to retrieve an object more quickly if it is available from a common parent (or grandparent)
of some other proxy cache that has the object. Second, hierarchical caching provides an
asynchronous multicast infrastructure, which can signi�cantly reduce bandwidth usage in
the Internet [70].

Given that cache servers are present at regional and national levels, and peering agree-
ments exist which organize the proxy, regional and national caches into hierarchies, we now
modify our caching scheme to exploit the higher-level caches.

3.4.1 Populating Caches

In order to exploit the higher-level caches, we must make sure that the higher level caches
obtain copies of the objects cached at lower levels. We propose that lower level caches push
objects to their higher level parents. This way the objects are easily available for siblings
under the same parent, and requests from distant hosts can be satis�ed at a higher level
in the network.

The details of our pushing strategy are as follows. A low level cache periodically sends
a list of new objects (with last modi�cation dates) to its parent. The parent decides which
of the objects in the list to cache and retrieves these from the child cache. This is done at
every level in the hierarchy and, in the end, the caches are �lled up as they would have been
using traditional hierarchical caching. Caches at the lowest level should send information
about every object, but at higher levels a cache might use some locally de�ned policy (e.g.,
objects that are cached in multiple child caches) to decide which objects to report to its
parent.

3.4.2 Network Tra�c

Since LDS increases the number of messages sent over the network, it may overload some
links or servers and in fact degrade performance. We are currently performing an analysis
of how much LDS increases current network tra�c. The following are the key factors:

1. LDS queries and replies: Although these are normal DNS messages, an LDS
query is sent every time a proxy needs to retrieve a URL that it is doesn't have
cached. Caching LDS records at the location servers will reduce some of this tra�c;
however, caching is not expected to have the same impact that it has with ordinary
DNS, since a URL reference is more speci�c than a hostname reference.
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2. Update tra�c: When the status of an object changes in a cache, the cache must
send an update message to the object's authoritative location server. For popular,
widely cached objects, this may result in too much tra�c directed at the authoritative
server.

In order to reduce the amount of LDS lookup tra�c in the Internet, we propose a
variation to our basic LDS scheme. In this variation, once we get the location information
for an HTML-page we assume that all the inlined objects on the page are also available
from the same set of object servers. One advantage of this scheme is that it heavily cuts
down on the amount of LDS tra�c compared to that basic scheme since we now only
send one LDS query for each HTML-page instead of each URL. The disadvantage of the
variation is that there are no guarantees that the inlined objects are available from the
same object servers. Origin servers and replicated servers should have the objects but a
cache may have already purged some or all of them. If the object server does not have the
requested object, we will do an LDS query for that object to obtain up-to-date location
information.

In Section 4 we will show how the amount of LDS tra�c can be signi�cantly reduced
when the LDS system is restricted to replicated servers.

To address the issue of update tra�c, we propose that any cache that has a parent
refrain from sending update information. Instead, the update information is forwarded
to the parent during the pushing phase. The highest parent that does not have a copy
of the object sends to the authoritative server an update message that contains update
information for itself and its updated children. The bene�t is that there are signi�cantly
less higher level caches than low level caches, thus much less update tra�c.

3.4.3 Practical Considerations

In the above scheme, the highest parent in the hierarchy sends update messages for all its
children which are thus all included in the database at the location server. As a result,
institutional caches would also be included in the list returned by the location server,
which means that they could receive requests for cached objects from hosts outside their
own network. It is desirable to keep the institutional caches o� the list of locations for
two reasons. First, institutions likely do not want outside hosts using their bandwidth
to retrieve objects. Second, objects at institutional caches are likely to be cached in the
parent caches and outside hosts can retrieve objects faster from the parent cache.

Cache digests [73] are used in traditional hierarchies to represent cache contents in a
compressed form. A cache fetches the digests of its neighbor caches and when a request
cannot be satis�ed locally, the cache checks the digests of the neighbor caches to see
whether any of them have the object cached. If so, the object is retrieved from that cache;
otherwise the request is forwarded to the parent cache. In LDS-based caching, having the
digest of the parent cache is useful because this way we avoid the LDS-lookup for objects
that are cached at the parent and would in any case be retrieved from there.
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3.5 Replicated Servers

The LDS scheme is not limited to caching. It can also be used to disseminate information
about replicated or mirrored objects. When an object is replicated at another server, this
information is added into the location database at the authoritative location server. When
a client requests this replicated object, it does an LDS lookup and gets a list of all servers
holding a copy of the object. Because the information is not dynamically replicated as
in caching, but rather placed at well-chosen locations, there is rarely need to notify the
location servers of new copies. Likewise, there is no need to push objects into other servers
since all replication decisions are made o�-line.

With LDS, a user addresses a replicated object by the object's unique URL, LDS
returns the list of servers that have the object. The browser then transparently chooses
one of these (the best in some sense). The user would not have to know about the actual
physical location of the object.

3.5.1 Reducing LDS Query Tra�c

The scheme just described for replicated servers still requires that clients send an LDS
lookup for each URL. In order to reduce the number of LDS messages we propose the fol-
lowing method of replicating servers and storing information about the replicated URLs.
In this scheme, the LDS no longer keeps track of cached objects. It only tracks repli-
cated and partially replicated servers. We require that replicated servers replicate either
whole sites or complete sub-trees of servers. An example sub-tree of an origin server
is all the objects on the origin server below a given URL pre�x, e.g., all objects under
http://cnn.com/sports/.

Suppose that a client wants to retrieve a URL. Normally, a client would send a DNS
lookup to obtain the IP address of the origin server and retrieve the object from there.
Using LDS the client proceeds as follows. First, the client sends an LDS query for the
hostname in the URL. The LDS system returns a list of all servers that mirror either the
whole site or a complete sub-tree from the site. We need to extend the resource record
de�ned in Section 3.3.1 to include a pre�x indicating the sub-tree that is mirrored by that
particular server. The client then chooses the �best� server among those servers that mirror
the desired sub-tree and forwards the actual HTTP-request to this server. A server may
mirror multiple sub-trees from a single origin server; in this case LDS would return one
resource record for each sub-tree.

Compared to the caching scheme discussed in Sections 2 and 3, this scheme has several
advantages. First, and most important, in this mirroring scheme the client sends only one
LDS lookup for each server; in the caching scheme, the client must send an LDS lookup
for each URL. The caching scheme drastically increases DNS tra�c in the network while
the mirroring scheme keeps DNS tra�c at its current level. (Recall that a client would
in any case have to do a DNS lookup to get the IP address of the origin server.) Second,
objects at mirrored servers tend to stay at the mirrored servers for long periods of time
while objects in caches are cached and purged dynamically. Hence, LDS information for
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a mirrored server can be cached longer at location servers which greatly reduces lookup
tra�c. When the authoritative LDS server sends information about a mirrored site, it
should �rst send out information about mirrors that mirror the most of the site. This is
because DNS replies are by default sent over UDP and the message size is severely limited
(512 bytes). By sending information about mirrors that mirror large subtrees, we maximize
the likelihood that the client has the necessary information in the reply.

Compared to the standard DNS-way of accessing objects, our mirroring scheme does
not increase the number of DNS messages in the network. The reply messages are slightly
larger, however, since we need to indicate the pre�x in the resource record. We do not
expect this increase in size to be signi�cant since URL pre�xes can be e�ciently encoded
using the encoding speci�ed in Section 3.3.1 and DNS resource record pointers.

3.6 Routing Decision

When the cache has received a reply to its LDS-lookup containing several object servers
(caches and origin servers), the next question is: �Which one of the possibilities to choose?�
Determining the best alternative is an important topic of our ongoing research.

Possible solutions include:

� All querying hosts measure connection qualities to object servers and keep a list of
servers with known good performance.

� Pass QoS information along in LDS updates and replies.

� Use explicit routing information from BGP.

We will now provide some details on how these methods could be used.
In the �rst option, all querying hosts (e.g. low level Web caches) measure the time it

takes to fetch objects from other servers (Web servers or other caches). This download
time gives a crude estimate of the actual bandwidth between the two hosts. The querying
host keeps a list of servers with which it has had good connections and prefers those servers
to others when both types of servers are present in the LDS reply. Of course, the actual
network conditions change all the time, but the results presented in [50] on performance
characteristics of mirror servers indicate, that from a large set of mirror servers, only a
small number need to be considered as candidates for download. Although the study in [50]
uses a �xed number of mirror sites, we believe that the results can be applied to situations
where the number of servers changes dynamically.

The second option is to pass some QoS information in the LDS replies along with the
age information about the object. For example, a Web server can measure the connection
times of incoming connections, estimate the connection bandwidth and take an average of
the estimated bandwidths over all connections. This average bandwidth can be seen as
the bandwidth that a random client somewhere in the network could expect to get when
requesting objects from this server. Likewise, caches can measure the bandwidths of all
out-going connections and calculate the average bandwidth.
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The third option uses explicit routing information obtained over BGP by talking to
local routers. This information gives the host a topological map of the network which
can be used to �nd out how far each of the servers in the LDS reply are. Unfortunately,
routing information gives only reachability, not quality, so some quality measures, as in
the �rst two options, would be necessary. Grimm et al. [29] have studied using routing
information in request routing and have decided against using BGP information because
of con�guration and security issues, amount of data and di�culty of obtaining it. Their
approach is based on using whois-services.

Regardless of the approach chosen, any querying host can implement any local policies
necessary when deciding where to forward a request. For example, a cache operator may
want to forward requests to other caches based on the domain of the origin server.

3.7 Related Research

In [24] Gadde et al. . compare traditional hierarchical caching with an architecture where
a single centralized server holds information about where each document is cached. When
a low level cache wants to �nd out where an object is cached, it sends a message to this
central mapping server which responds by either redirecting the request to a peer server
or by forwarding it to the origin server. This scheme results in all of the objects being
cached at institutional caches. The authors also perform simulations using a small number
of caches and �nd out that the performance of the centralized solution is on average better
than that of the traditional hierarchy. The number of caches in the simulations is low,
only 8 and 32 cache con�gurations are simulated. The authors express their doubts about
the scalability of their solution, but present some ideas for replicating and distributing the
location information.

In our approach, the querying host gets a list of all servers holding a copy of the object
instead of being redirected to one of them by a mapping server. This puts the querying host
in control over where the request will be forwarded. This decision might greatly depend
on local conditions and policies unknown to a central server. Another di�erence in our
approach is that the location information is distributed over DNS which is ubiquitous and
provides satisfactory service.

Tewari et al. [85] present an architecture where data is cached near the browser and
location hints are passed through a metadata hierarchy. Their architecture arranges the
caches in virtual hierarchies, one for each object, for distributing the metadata information.
In their architecture, when a cache caches a copy of an object, it sends out a location hint
indicating the URL and its address. This hint is propagated in the virtual metadata
hierarchy and could eventually reach all caches in the system. Caches keep track of all the
hints they have received and use them to forward requests. If a cache receives a request
for an object which is not cached locally but the hints indicate another cache holding
the object, the request is forwarded to this cache. The virtual metadata hierarchies are
constructed using IP-addresses and URLs in a way which tries to minimize the distances
between parents and children. Also, the hierarchy guarantees that a cache can receive only
one hint for any object. This hint is likely to be from the nearest cache holding the object,
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but this is not guaranteed.
One di�erence between their and our approaches is the way caches are placed. In their

architecture only institutional caches hold objects and every request forwarded using a hint
would be forwarded to another institutional cache. This behavior might be unacceptable
to some people who do not want more external tra�c on their networks. In our approach,
objects are pushed to higher levels and this eliminates the need for going to other insti-
tutional caches. Second important di�erence is that using LDS for locating objects, a
querying host gets a list of all possible locations. It can then choose from the list according
to a local policy or by adapting to current network conditions. In [85] a cache receives only
one location hint. Since the virtual metadata trees are based on IP-addresses and URLs,
there are no guarantees that this hint indicates a good server. We are currently performing
a comparison of the two schemes.

Amir et al. [5] study three di�erent methods for redirecting requests to mirrored sites
� HTTP redirection, DNS round trip time measurements, and shared IP addresses. In
their DNS-based solution they use DNS round trip time measurements to determine the
best replicated server for a client. They place the replicated servers near an authoritative
DNS server which gives the address of the replicated server when queried for the origin
server. This results in clients being eventually redirected to their closest replicated server.
There are two major di�erences between their approach and our replicated server approach
(Section 3.5.1). First, in their system replicated servers must always replicate the entire
site while in our system a server may replicate only sub-trees of the original site. Second,
in their system the replicated servers must be placed in close proximity of the authoritative
DNS server. Our architecture places no constraints on the placement of the servers.

3.8 Future Work

We will continue our work on LDS by performing quantitative comparisons of the di�erent
architectures presented in this chapter. In particular we will concentrate on evaluating
the amount of new tra�c in the network caused by the lookup and update messages. We
will also compare the traditional caching hierarchy with our di�erent LDS architectures to
�nd out how much object access latency can be reduced through LDS. We will also closely
study the request routing issue in order to �nd out how much information is needed to
make good routing decisions.

3.9 Conclusion

In this chapter we have presented the Location Data System, a new network application
that can be used to locate where copies of objects are stored on the Web. LDS provides
a service similar to DNS and can be implemented as an extension to DNS and deployed
incrementally. We have presented two applications of LDS, locating objects in mirrored
servers and locating objects in Web caches. We have also discussed how clients can decide
the best server to forward requests to based on information on network conditions and
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topology collected from the dynamically from the network.
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Chapter 4

Replicated Directory Service

4.1 Overview

We propose a new design for the Domain Name System (DNS) that takes advantage of
recent advances in disk storage and multicast distribution technology. In essence, our
design consists of geographically distributed servers, called replicated servers, each of which
having a complete and up-to-date copy of the entire DNS database. To keep the replicated
servers up-to-date, they distribute new resource records over a satellite channel or over
terrestrial multicast. The design allows Web sites to dynamically wander and replicate
themselves without having to change their URLs. The design can also signi�cantly improve
the Web sur�ng experience since it signi�cantly reduces the DNS lookup delay.

4.2 Introduction

We propose a new design for DNS that takes advantage of recent advances in disk storage
and multicast distribution technology. This design can be implemented incrementally,
allowing for a graceful evolution from the current DNS to a new system. Our design does
not change the syntax or semantics of the DNS messages; it only a�ects the way the DNS
database is managed. Our proposed design has two principal features:

� First and foremost, it is highly responsive to changes in DNS information. Being able
to rapidly change DNS information and propagate the changes is useful in solving the
hot-spot problem on the Web. Often, a single web server becomes suddenly popular
and receives many more requests than it can handle. In our design, without changing
URLs, the web server could replicate its contents on another web server and inform
the DNS system of the alternative server. Because the new web server is immediately
available in the DNS to every client, many clients would likely choose it over the old
server (by using, for example, DNS rotation), thus signi�cantly reducing the load on
the server and improving the quality of service for everyone. Modern DNS does not
allow this because nameservers are allowed to cache resource records.

� It can signi�cantly reduce the DNS lookup time. The system eliminates the need to
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query distant authoritative servers. Because DNS round-trip time is often a signif-
icant fraction of the delay when accessing a Web page, our design can improve the
Web-sur�ng experience.

Our design is inspired by two recent technological advances. First, disk storage has
become abundant and cheap in recent years, and the trend is expected to continue. As we
shall argue in the body of this chapter, the entire DNS database can be stored in disk of a
household PC. Second, emerging terrestrial multicast and satellite broadcast systems can
e�ciently distribute DNS information. We note here that these two advances abundant
disk space and e�cient broadcast distribution are currently being exploited by Web cache
technology in order to bring the �Web to the edge of the network� [80].

In essence, our design consists of geographically distributed servers, called replicated
servers, each of which having a complete an up-to-date copy of the entire DNS database.
To keep the replicated servers up-to-date, they distribute new resource records over the
satellite channel (or over terrestrial multicast).

In this chapter we provide (i) a detailed description of the design, (ii) a detailed fea-
sibility analysis for network tra�c, replicated server tra�c and disk storage requirements,
and (iii) a plan for migrating the existing DNS system to our replicated design. We also
discuss the security and fault-tolerance issues for this new design. This chapter is orga-
nized as follows. In Section 4.3 we provide a short overview of the existing DNS system.
In Section 4.4 we describe the replicated DNS architecture. In this section we also analyze
storage and network bandwidth requirements for the new architecture. In Section 4.5 we
model the tradeo� between the staleness of the DNS information and the tra�c load at the
replicated servers. In Section 4.6 we use empirical Internet data to study how much our
architecture will reduce the time it takes to resolve a hostname. In Section 4.7 we look at
how the existing DNS system can migrate to our proposed architecture in a graceful man-
ner. In Section 4.8 we address security and fault tolerance issues for the new architecture.
Finally, Section 4.9 concludes the chapter.

4.3 Overview of DNS

In this section we provide a brief overview of DNS and introduce some terminology that we
shall use throughout the chapter. The principle task of the DNS is to provide a mapping
from the human readable domain names to numerical IP-addresses used to identify hosts on
the Internet [45, 46]. It is implemented in a distributed database consisting of a hierarchy
of nameservers. The name space is divided into zones and each zone has two or more
authoritative nameservers that are responsible for keeping information about that zone
up-to-date. One of these authoritative servers is the primary nameserver, which holds the
master �le containing all the resource records for that zone. When new hosts are added to
a zone, the administrator must edit this �le manually to make the new hosts public. The
other authoritative servers (secondary nameservers) periodically fetch the contents of the
master �le in order to keep their records up-to-date. These zone transfers are done using
the special zone transfer query type in DNS (AXFR query type [46]).
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Figure 4.1: A DNS query. C is the client, H is the host that the client is trying to resolve,
D1 is the local nameserver, D2 is a root name server, D3 is an intermediate nameserver,
and D4 is an authoritative nameserver for the queried host H.

When a client needs to obtain an IP-address for a hostname, the query proceeds as
shown in Figure 4.1. In Figure 4.1, C is the client, H is the host that the client is trying
to resolve, and D1�D4 are DNS servers.

First, the client sends the query to its local nameserver D1. Typically this local name-
server acts as the primary nameserver for the zone where the client resides and has all the
DNS information for that zone as well as cached copies of DNS information from other
zones that the local clients have recently queried. Assuming that this server does not have
a cached copy of the information, it queries one of the root nameservers, D2 (currently
there are 13 root nameservers in the world [71]) which returns a referral to a nameserver
responsible for the top-level domain of the hostname. The local nameserver then queries
this server D3 and gets a referral to an authoritative server D4 for the domain in which
the host is located. Finally, the local nameserver queries the authoritative nameserver and
gets the reply with the IP-address of the host. When the local nameserver receives the
reply it sends it to the client and caches a copy. If another client now wants the address of
the same host, the local nameserver can immediately return the cached copy, thus avoiding
the need to query distant nameservers. (In this example we assumed that all the queries
from D1 are iterative; recursive and combinations of recursive and iterative queries are
possible. We also assumed that there is one intermediate nameserver between the root and
the authoritative nameserver; in reality there can be more or less.)
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Figure 4.2: Evolution of Hard Disk Storage Capacity

4.4 Replicated DNS Architecture

Our architecture makes use of replicated nameservers, with each replicated nameserver
storing the entire DNS database. Before describing the architecture in detail, we perform
a simple feasibility analysis for storing the entire DNS database on a nameserver.

4.4.1 Storing the Entire Database on a Server

Server disk storage has experienced dramatic increases over the past twenty years. Fig-
ure 4.2 shows the evolution of disk capacity on a typical desktop computer from 1980 to
2000.

In 1999 standard PCs are sold with approximately 10 gigabytes of disk storage. If
storage capacity continues to grow at current rates, standard PCs will be sold with 20-30
gigabytes of storage in 2000.

Now let us estimate the storage requirements for a replicated nameserver. Since each
replicated nameserver replicates all of the DNS information on the Internet, it must have
an entry for every host in the DNS. It is possible that a hostname maps to multiple IP-
addresses, but this is not very common, so, for simplicity, our analysis assumes that we
need one resource record for each existing hostname.

The Internet Domain Survey [31] reports that in July 1999 there were slightly over
56 million hostnames registered in DNS. Using the data from their January 1997 survey
we can calculate the average length of a hostname in the DNS which is 20.07 characters. We
will conservatively assume that we need 40 bytes of storage per hostname; this includes
the actual hostname, IP-address, TTL-information, and possibly other information. In
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1 gigabyte of storage we can store entries for 25 million hostnames, thus we would need a
bit over 2 GB of storage to store the IP-addresses of all the hostnames in the DNS in 1999.

The above estimate only accounts for IP-addresses and hostnames, i.e., only for DNS
A-type resource records. Note that NS-type resource records are not necessary, since the
replicated nameservers contain information about all hosts. We will, however, need to
account for other types of resource records, most notably PTR, CNAME, MX, and SOA
records. In order to get an upper bound estimate, we will assume that there is one resource
record of each of these types per host. In reality, only PTR-records exists for each host.
Most hosts on the Internet do not have CNAME records, MX records exist usually on a
per domain basis, and SOA records exist only for authoritative nameservers. According to
our conservative assumptions, we would need 10 GB of storage to store all the information
in the DNS system. In reality, this would probably be much less, on the order of a few
gigabytes, which is easily stored on the disk of an inexpensive PC.

4.4.2 Interaction between Authoritative and Replicated Nameservers

Our proposed architecture consists of the current authoritative primary nameservers and a
number of replicated nameservers (something between 10 and 10,000) distributed all over
the world. Ideally there should be at least one replicated nameserver per region (e.g., one
per country) so that clients can receive replies to queries fast. Replicated nameservers
could also be present at the local ISPs and at corporate and university networks.

Our replicated architecture maintains the �local administration, global availability�
philosophy behind modern DNS [4]. In our replicated architecture the primary nameservers
still keep track of their own zones in the normal way, i.e., they have the master �le for
the zone and administrators make changes to this �le in the usual manner. However,
our architecture replaces the secondary authoritative servers with replicated nameservers.
A replicated nameserver is responsible for all the primary nameservers in its region and
periodically fetches the zone information from the primary nameservers. Naturally, a
replicated nameserver can also replace a primary nameserver, if needed. (For clarity of
presentation, we assume in the following that each primary nameserver is associated with
a single replicated nameserver; in reality the primary nameserver could interact with any
number of replicated nameservers.) In the new architecture, the primary nameserver of a
zone also pushes the information to its closest replicated server when the information in
a zone changes. This combination of pushing updates and periodically fetching the whole
zone guarantees fast updates and guarantees that the information is refreshed periodically
in case some of the update messages were lost in the network. (Recall that by default DNS
works over UDP which o�ers no guarantees.) It also provides a mechanism for replicated
servers to quickly recover from a crash. For the fetching, the replicated server uses the
normal DNS zone transfer query (AXFR query type; zone transfers are done over TCP);
for the pushing the primary servers could use the DNS dynamic update method [87].
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Figure 4.3: Connections between authoritative nameservers (AS) and replicated name-
servers (RNS)

4.4.3 Interaction among Replicated Nameservers

The replicated nameservers contain an up-to-date database of the entire DNS database.
As shown in Figure 4.3, this is accomplished by having the replicated nameservers commu-
nicate with each other in order to share the updates they have received from the primary
nameservers that they parent. In this section, we outline two schemes for distributing the
update information: multicast and satellite.
IP Multicast

In this scheme the replicated servers all belong to a multicast group which has a single
multicast address. When a replicated server receives new information from its child primary
nameservers, it sends the information into the multicast address. Eventually all replicated
servers will receive the update. The advantage of this solution is that it does not require any
special hardware, but it needs all the replicated nameservers to have access to multicast,
e.g., to be connected to MBone [19]. This solution works best if the number of replicated
servers is not too large and they can be equipped with multicast; also the amount of
update tra�c may become an issue since the update tra�c has to share the bandwidth to
the replicated nameserver with the normal query tra�c.
Satellites

Another possibility for transmitting information between the replicated servers is to
bypass the Internet and send the information over a satellite channel. Because of the
broadcast nature of satellite and our need to broadcast the information to all replicated
servers, a satellite channel is a very attractive alternative for distributing the information.
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The main advantages of using a satellite channel for distributing the information are the
following: (1) The update tra�c does not have to travel long distances over the terrestrial
Internet; (2) information is immediately available at all replicated nameservers.

We propose two possible schemes for handling the use of the satellite channel. In the
�rst scheme one of the replicated nameservers is designated as the central server. All the
other replicated nameservers collect the updates from the primary nameservers in their own
regions, aggregate the updates, and send them over the Internet via unicast to this central
server. The central server receives updates from all other replicated servers and broadcasts
these updates over a satellite link. This scheme requires that all replicated nameservers be
equipped with a satellite receiver. This method has the advantage that there will be no
collisions on the satellite channel since only one station is transmitting. This architecture
is similar to the SkyCache architecture [80] where Web caches send access reports to a
central master server which streams the most popular Web pages over the satellite link.

In the second scheme we have no central replicated server. Instead each replicated
nameserver has a satellite transmitter and broadcasts over the satellite channel the updates
it has received to all other replicated nameservers. In this scheme we have to use some
method of resolving the con�icts that might occur when two di�erent servers want to
broadcast information at the same time. According to [60] the best medium access control
protocol for bursty tra�c is either random access or a simple reservation based protocol,
depending whether the messages are short or long, respectively. We expect DNS update
tra�c to be bursty and the messages to be relatively short, so a simple medium access
protocol, such as Aloha or Slotted Aloha, is likely to provide su�ciently good performance.

The choice of the update scheme depends greatly on which kinds of satellites, GEO
or LEO, we are using. In order to get global coverage with geostationary satellites, we
need to use several satellites in a coordinated fashion. Therefore it is simpler to use the
second scheme with GEO satellites. In a LEO constellation, the centralized scheme works
as described above since the constellation provides global coverage; the second scheme in
a LEO constellation would most likely be analogous to terrestrial IP multicast.

One downside of using satellites, compared with using IP multicast, is that we need to
install satellite receivers and transmitters and obtain bandwidth on the satellite channel.
The �rst scheme only requires a satellite receiver on the replicated nameservers; this can
be a normal satellite dish, such as the ones used in the DirecPC-service [17]. Such dishes
are relatively cheap, around $300�$400, and provide several hundreds of kilobits/second
of bandwidth (DirecPC operates at 400 kbps/s). The second scheme is more expensive
since we need to install both receivers and transmitters; typically this is done with Very
Small Aperture Terminals, or VSATs. An average VSAT costs between $5,000 and $10,000
making the cost of a single replicated nameserver much higher than in the �rst scheme.
Note, however, that in the �rst scheme we need also the central up-link station which
increases the total cost of the installation. These costs are estimates for a system using
geostationary satellites.
Reliability

Because having correct information in the replicated nameservers is vital to the DNS
system, we must ensure a reliable means of distributing the update messages. This means
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Bandwidth (kbit/s) Centralized Aloha Slotted Aloha
128 4.83 0.87 1.74

256 9.68 1.74 3.48

512 19.35 3.48 6.97

1024 38.71 6.97 13.93

2048 77.41 13.93 27.87

Table 4.1: Number of updates per host per week for di�erent satellite links

that some sort or reliable multicast protocol must be employed, whether terrestrial or
satellite multicast is used. Protocols using Forward Error Correction (FEC) along with
a return channel (which is clearly available for replicated DNS) can e�ciently provide
reliability [34, 58].

4.4.4 Tra�c Analysis for Communication among Replicated Servers

Assuming that each resource record is 40 bytes and that the central master replicated
server is using a 128 kbit/s satellite channel to broadcast information to other replicated
servers, we can send information about 400 modi�cations every second. Assuming that
these modi�cations are spread uniformly over all hosts, the information about a host could
change every 110,000 seconds on the average, or once per 1.3 days. This is less than the
default time-to-live period of 2 days in the popular BIND-nameserver. We can therefore
safely assume that the rate of change of DNS information is far less than what can be
handled over a 128 kbit/s satellite link.

Table 4.1 shows the number of updates per host on the average for di�erent satellite
link bandwidths. We show the numbers for the centralized architecture and the distributed
architecture using both pure Aloha and slotted Aloha. Recall that the throughput for
Aloha is 18 % and for slotted Aloha it is 36 % [60]. In [34] it is reported that using the
FEC-protocol from [58] we can expect to use about 10 % extra bandwidth due to FEC.

The numbers in Table 4.1 assume that the changes are evenly divided over all hosts.
In reality this is unlikely, since most hosts do not change their DNS information at all.
The hosts that rapidly change their associated DNS information may require high rates
of change. Assuming that 90 % of the hosts on the Internet are �stable�, i.e., they never
change their DNS information, the remaining 10 % of the hosts could change their DNS
information 48 times per week using the 128 kbit/s link; this corresponds to roughly
7 changes per day, or one change every 3.5 hours. Using a 1 Mbit/s link, the rapidly
changing hosts could change DNS information 55 times per day, or little over twice an
hour on the average.

4.4.5 Resolving DNS Queries

We discuss two variations for resolving DNS queries. Neither variation requires any changes
in client DNS software. In the �rst variation, a client directly queries its replicated name-
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server. (Thus, the client con�gures the client DNS software to point to its parent replicated
nameserver rather than to a local nameserver.) Because the replicated nameserver con-
tains a complete and and up-to-date copy of the entire DNS database, the replicated
nameserver will be able to directly return the requested RRs. Furthermore, because the
replicated nameservers are �close� to the client, the responses should come back fast.

One problem with the variation just described is that request load on a replicated
server can be high if the load is not balanced over a large number of replicated servers.
Our second variation for resolving DNS queries makes use of the existing infrastructure
of local nameservers. In this variation, a client resolves a hostname as follows. First,
the client sends a DNS query to its local nameserver. If the local nameserver is also the
primary nameserver for the local zone and the query is for a local hostname, the local
nameserver replies with the requested information. If the query is for a remote hostname
and the local nameserver does not have the information cached, it sends the query to the
nearest replicated nameserver. This phase is similar to a nameserver sending a query to a
root nameserver with the exception that in our architecture the closest replicated server is
typically well-de�ned; in normal DNS the nameservers measure round-trip times to other
nameservers and make decisions based on past experience. (If the local nameserver has
several replicated nameservers to choose from, it can use round-trip time measurements to
select the closest one.) The replicated nameserver replies with the requested information,
which the local nameserver caches and returns to the client. This scheme has the advantage
that if the information is not cached, the query is sent to a replicated nameserver in the

same region as the client instead of being sent possibly to the other side of the world as
can happen in normal DNS. This greatly reduces the latency that a client observes when
performing DNS queries.

In this second variation, a replicated nameserver receives less request tra�c because
many client requests are �ltered by the local nameserver. In particular, all queries for a
local host (i.e., in the same zone as the requesting host) and all queries for cached RRs
are �ltered. The downside of the scheme is that RRs in the nameserver caches can be
stale (as is the case in the current DNS). Because one of our principle goals is to provide
a DNS architecture that is highly responsive to hostname changes, the issue of staleness is
important. In Section 4.5 we will study in detail the tradeo� between the amount of tra�c
at a replicated server and the probability of receiving a stale RR.

4.4.6 Arpanet Name Resolution

This architecture is a step towards the old Arpanet HOSTS.TXT -solution [4] with some
important di�erences. In Arpanet, the HOSTS.TXT �le, which was maintained on a single
computer at Stanford Research Institute (SRI), contained the name-to-address mappings
for all hosts on Arpanet. Administrators e-mailed changes to SRI and periodically trans-
ferred the HOSTS.TXT �le over FTP. As Arpanet grew, several problems with this centralized
solution emerged. First, the tra�c load on the computer holding the master �le became
unbearable. Second, maintaining the consistency of the �le across the network was di�-
cult. Third, as more hosts were added to the Arpanet, the HOSTS.TXT occupied more and
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more storage in the server. In summary, the centralized mechanism didn't scale. Instead,
a new system was designed to allow local administration of the data yet make the data
globally available; this was the modern DNS.

Our replicated architecture takes the old HOSTS.TXT-approach by collecting rather than
partitioning the entire DNS database. However, because of its replicated structure, our
architecture scales well. When the modern DNS was designed in the early '80s disk storage
was expensive; therefore maintaining a replicated database of all hosts on the network was
infeasible. Nowadays, disk storage is cheap, and as we previously argued, it is quite feasible
to construct a replicated database for all of the information in DNS.

4.5 Staleness vs. Tra�c at Replicated Nameservers

In this section we suppose that clients direct their DNS queries to local nameservers,
and a query is only forwarded to a replicated nameserver when there is a �miss� at the
local nameserver (i.e., the second variation as described in Section 4.4.5). Passing queries
through local name servers can signi�cantly reduce the query tra�c at the replicated
servers. However, because the local nameserver caches RRs, there is a risk that the local
nameserver will frequently reply with stale RRs.

When a Web site with a particular hostname is moved or copied to a new location, the
RRs associated with that hostname change. If the Web site knows its locations will change
in exactly t0 seconds, then the TTL for the RRs can be set to the remaining lifetime of
the RRs. This ensures that local nameservers never deliver to clients stale RRs for the
site. However, in order to respond to randomly occurring hotspots, many sites will want
to make spontaneous changes to their resource records. If the TTL for the RRs of such a
site is set to a large value there is a risk that nameservers caching the RRs will frequently
respond with stale RRs. On the other hand, if the TTL is set to a small value, then a
large fraction of the queries will be forwarded to the replicated server. In this section we
quantify this tradeo�.

For simplicity, we consider only the clients under a single local nameserver accessing one
resource record (RR). This scenario is depicted in Figure 4.4. The local nameserver either
has a cached copy of the resource record, or has to query a replicated nameserver for an
up-to-date copy of the resource record. When the local nameserver queries the replicated
nameserver, the replicated nameserver indicates a time-to-live value in the reply. We
consider the following two criteria:

1. The fraction of queries from the clients to the local nameserver that receive a stale
RR because the RR has changed.

2. The number of extra queries to the replicated server which only serve to validate the
cached copy at the local nameserver.

Denote the rate at which clients request the resource record as �. When there is a large
number of independent and active clients under the nameserver, we can reasonably assume
that the inter-request times are exponentially distributed. Denote by T the amount of
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Figure 4.5: Client Requests and Modi�cation Times

time for which the local nameserver is allowed to cache the resource record. Finally, let
� denote the rate at which information in the RR changes. We assume that the times
between modi�cations are exponentially distributed.

Figure 4.5 shows the client queries and modi�cations to the resource record. The
modi�cation times are at the top and client queries are at the bottom. The boxes, each
of length T , indicate the period during which the RR is cached at the local nameserver.
The shaded boxes indicate the periods during which the clients receive a stale RR from
the cache because the RR has changed.

We now calculate what fraction of requests are forwarded to the replicated nameserver.
Given the above assumptions, the expected time between successive requests to the repli-
cated nameserver is T + 1

�
. Therefore the rate of requests to the replicated server is 1

T+ 1

�

.

Given that the total rate of requests is �, the fraction of requests forwarded to the replicated
nameserver is

1

T + 1
�

=� =
1

�T + 1
: (4.1)

Figure 4.6 shows the fraction of queries forwarded to the replicated nameserver for
di�erent � and T . In Figure 4.6(a) we show faster request rates and TTLs up to one hour
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and in Figure 4.6(b) we show the slower request rates and TTLs up to 6 days.
From Figure 4.6(a) we can see that if the request rate is high enough, on the order

of one request every 10 seconds (� = 10�1), even a short TTL-value, such as 5 minutes,
is su�cient to satisfy most queries from the cache at the local nameserver. Figure 4.6(b)
shows that if the request rate is very low, the TTL-value has to be extremely high to provide
any measurable reduction in query tra�c to the replicated nameserver. The situation
shown in Figure 4.6(a) represents a scenario where the resource record is very popular and
the product �T is large, i.e., the expected number of requests in a TTL-period is high.
Figure 4.6(b) corresponds to the case where the resource record is not very popular.

We now calculate the fraction of requests that receive stale RRs. Let Y denote the
time between successive modi�cations. Within each interval of expected length T + 1

�
,

E[N(T�Y )+ ] requests see stale resource records, where Nt is a Poisson process with rate �.
Thus the fraction of stale resource records within an interval is

E[N(T�Y )+ ]

1 + �T
=
�E[(T � Y )+]

1 + �T
: (4.2)

We can explicitly calculate the expectation:

E[(T � Y )+] =

Z T

0
(T � y)�e��ydy

=
1

�
(e��T + �T � 1)

(4.3)

The fraction of stale resource records is then

�

1 + �T

�
e��T + �T � 1

�

�
=

1
1
�
+ T

�
e��T + �T � 1

�

�
: (4.4)

If T >> 1
�
, i.e., we have a large number of requests in one TTL-period (�T is very large),

then � has very little e�ect on the overall fraction of stale resource records. In Figures 4.7
and 4.8 we show the fraction of stale RRs delivered to the clients in four di�erent scenarios.
In Figure 4.7(a) and Figure 4.7(b) we show rapidly and slowly changing RR, respectively
and Figure 4.8(a) and Figure 4.8(b) compare the e�ects of � on slowly changing RRs.

Assuming that we would like to have a fraction of less than 10�3 stale RRs, we can see
from Figure 4.7(a) that this requires us to e�ectively disable caching at the local nameserver
for RRs that change on the average more often than once every 3 hours (� = 10�4). When
the resource records are changing more slowly, as is the case in Figure 4.7(b), we can see
that even for RRs changing on the average every 115 days (� = 10�7), the maximum TTL,
in order to have the fraction of stale RRs below 10�3, is around 12 hours. Figures4.8(a)
and 4.8(b) show that the more popular the RR is, the larger the fraction of stale RRs is
(corresponding curves in Figure 4.8(a) are higher than in 4.8(b)). With longer TTL-values,
the fraction of stale RRs becomes insensitive to �, because the increase in T increases the
product �T .



4.5. STALENESS VS. TRAFFIC AT REPLICATED NAMESERVERS 73

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Fraction of queries forwarded to replicated nameserver

Time−to−Live T in seconds

λ=10−3

λ=10−2

λ=10−1

λ=1      

(a) Short TTL-values

0     100000 200000 300000 400000 500000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Fraction of queries forwarded to replicated nameserver

Time−to−Live T in seconds

λ=10−5

λ=10−4

λ=10−3

λ=10−2

(b) Long TTL-values
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Figure 4.7: Fraction of stale resource records delivered to clients
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76 CHAPTER 4. REPLICATED DIRECTORY SERVICE

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction stale RRs

F
ra

ct
io

n 
qu

er
ie

s 
to

 r
ep

lic
at

ed
 s

er
ve

r

λ = µ   
λ = 10µ 
λ = 100µ

Figure 4.9: Comparing fraction stale RRs and fraction queries to replicated server

In Figure 4.9 we compare the fraction of stale RRs and fraction of queries to the
replicated nameserver. The fraction of stale RRs is on the x-axis and the fraction of
queries to the replicated nameserver is on the y-axis. We �x � and � (� = 0:001 and
� 2 f0:001; 0:01; 0:1g; di�erent values for � and � give similar results) and vary T to
obtain the curves. As we can see from Figure 4.9, to get the fraction of stale RRs below
10�3, we will have to forward around 65 % of the queries to the replicated nameserver,
even in the case where the RR is requested frequently compared to its rate of change.

From these results we can conclude that replicated nameserver should allow the local
nameservers to cache RRs for only short periods of time, on the order of a few minutes.
This is because longer TTL-values increase the fraction of stale RRs considerably, and
even a short TTL-value provides a su�cient reduction in query tra�c to the replicated
nameserver for popular RRs.

4.6 Latency Improvement

In this section we study how much our proposed architecture will reduce the time it takes
to resolve a hostname. Because resolving some hostnames over the existing DNS requires
contacting distant servers, a DNS lookup may introduce a signi�cant delay into Web sur�ng
and other network applications. To evaluate the delay in the existing DNS, we performed
DNS lookups using the host- and dnsquery-commands on several di�erent hostnames all
over the Internet. In order to evaluate the e�ects of DNS lookups in a typical Web sur�ng
context, we divided the hosts into two groups: popular and unpopular hosts. The popular
hosts were the 35 most popular Web servers on the Hot100-list [30]. For the unpopular hosts
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Site Average
latency

Maximum
latency

% of lookups
exceeding 4 seconds

FR 1.79 47.44 14.4

FI 1.85 42.2 15.5

US 2.10 75.4 6.6

All 1.90 75.4 12.5

Table 4.2: DNS query results for unpopular servers

we chose 200 Web servers randomly from 33 di�erent top-level domains from the results
of the Netcraft Web Server Survey [53]. We chose to study these two groups separately
since the popular hostnames are likely to be found in the local nameserver and therefore
the actual DNS architecture in the background has no e�ect. The less popular hostnames
require the local nameserver to go out on the network to �nd the requested information.
We performed the queries from three sites, one in France (FR), one in Finland (FI), and
one in the US west coast (US). We discarded queries which either resulted in an error or
a timeout (as reported by the command being executed).

4.6.1 Unpopular Servers

Table 4.2 shows the results for the unpopular Web servers. We show the average and
maximum query latencies and the percentage of requests exceeding 4 seconds. We can
see that the average DNS lookup latency is around 2 seconds and that at the worst it
can take over a minute to resolve a hostname. We also see that a signi�cant number of
requests takes over 4 seconds to resolve which in the context of Web browsing can induce
a signi�cant delay.

In Figure 4.10 we show the distributions of the query latencies for the unpopular servers
at all three sites.

4.6.2 Popular Servers

In Table 4.3 we show the average and maximum DNS query latencies in seconds from all
the three test sites as well as the percentage of queries that took longer than 2 seconds to
resolve. The last line shows the averages over all three sites. We can see that the average
latencies are very low which is likely the result of the requested information being present
in the local nameserver's cache. We also see that, at worst, the latency can be up to several
seconds but that such events are relatively rare.

In Figure 4.11 we show the distributions of the query latencies for all the three sites.

4.6.3 Replicated Server

We also ran experiments on our local nameserver and the average time to resolve a host-
name was 30 ms. The round-trip time to the national Web cache of France from our
network is on the order of 20 ms, thus the total time to query a hostname at the replicated
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Figure 4.10: DNS query latency histograms for unpopular servers
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Figure 4.11: DNS query latency histograms for popular servers
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Site Average
latency

Maximum
latency

% of lookups
exceeding 2 seconds

FR 0.31 4.53 2.9

FI 0.14 1.5 0

US 0.22 3.8 2.9

All 0.22 4.53 1.7

Table 4.3: DNS query results for popular servers

nameserver (assuming it was placed at the same level as the national Web cache) would
be on the order of 50 ms. This is a reasonable assumption since, even though the database
at the replicated nameserver is larger than the one on our local nameserver, the replicated
nameserver would be running on a more powerful machine (our local nameserver runs on a
SPARCstation 10). If the replicated nameserver was placed closer to the client, the lookup
latency would be shorter, since the round-trip time to the replicated nameserver would be
much smaller.

We can conclude that the speed-up from using a replicated nameserver would be around
one order of magnitude for popular hosts and two orders of magnitude for less popular hosts.
This speed-up can signi�cantly improve the Web sur�ng experience.

4.7 Graceful Migration from Distributed to Replicated Sys-
tem

Because it is unreasonable to assume that everybody would be able to upgrade their systems
overnight to switch from the �legacy� DNS system to the replicated system, we need to be
able to deploy the system incrementally and transparently. In this section we outline one
of many possible migration strategies.

In the early stages of deployment, a relatively small number of zones could replace
their secondary or primary nameservers with a replicated nameserver. Using satellite
distribution or multicast IP, the replicated nameservers would share with each other the
up-to-date RRs for which they are responsible. Of course, when only a subset of the
local ISPs participate, a replicated nameserver will not be able to authoritatively answer
queries for all hostnames. When a replicated server is unable to answer a query, it will
have to resort to the legacy DNS system to obtain the RR, i.e., it will have to query a
series of nameservers, as shown in Figure 4.1. Whenever a replicated nameserver obtains
a RR as a result of a DNS query, it should cache that RR until the TTL of the RR has
expired. Additionally, using the satellite or multicast IP infrastructure, we propose that
the replicated nameservers share with each other the RRs that they have recently requested

from the legacy DNS system. In this manner, most of the �popular� hostnames will be
cached in the replicated servers, even if a given replicated nameserver handles relatively
little DNS tra�c. When a RR is about to expire, a replicated server can refresh the RR
and then distribute it to all the other replicated servers. Note that this strategy is similar
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to the Sky Cache model where the participating caches pool their user communities in
order to improve the performance. The advantage of this scheme is that it is easy to
deploy a few replicated nameservers at the leaves of the network, but the disadvantage is
that the replicated database will only contain a small (but widely requested) part of the
global DNS database. In addition, only participating zones are able to distribute rapidly
changing DNS information; non-participating zones would have to rely on the TTL-values
to force the replicated nameservers to update their databases.

Content providers would have an incentive to place their hostnames in zones with
participating ISPs (i.e., an ISP with a a replicated server), because a participating ISP will
be able to quickly distribute DNS information to all other participating ISPs, even if the
hosts are moved or replicated. Furthermore, users will have an incentive to subscribe to
participating ISPs, since the databases in the replicated ISPs contain most of the popular
DNS RRs. These incentives should provide su�cient motivation for the non-participating
ISPs to become participating ISPs. Once all the ISPs participate, the legacy system
(including the root servers) can be disabled, and the full bene�ts of the replicated DNS
system can be reaped.

4.7.1 Gathering Information

If a replicated nameserver replaces a secondary nameserver for a zone, the replicated name-
server can perform zone transfers from the primary nameserver and thus obtains a copy
of the resource records for that zone. Therefore the problem of gathering the DNS infor-
mation reduces to getting information from zones that are not represented by a replicated
nameserver. The simple solution is to contact one of the authoritative nameservers of
such zones and try to perform a zone transfer. If this succeeds, the replicated nameserver
can periodically perform the zone transfer in order to keep the records up-to-date. In this
situation, we lose the ability to track rapidly changing information since the primary name-
server does not inform the replicated nameserver of changes. Some zones, however, do not
allow other than the secondary nameservers to perform zone transfers from them. From
these zones we cannot get information, except by querying separately for each resource
record. In practice this means that every time the replicated nameserver receives a query
for a host in such a zone, the replicated nameserver queries one of the authoritative name-
servers and caches the reply like a normal local nameserver. The replicated nameserver
can then refresh the resource record when it is about to expire. We will thus obtain from
uncooperative zones all the resource records that clients actually request; this provides us
with enough information.

This method of gathering information presents us with the problem of keeping it up-to-
date. All RRs collected from uncooperative zones will have the normal DNS TTL-stamp
and the replicated nameservers can store the RR until the TTL expires. If the TTL is
very short, the replicated nameservers should not send that RR to the other replicated
nameservers. This is in order to avoid sending an almost continuous stream of update
messages which would be the result if the replicated nameserver needs to access the same
RR again in the near future. Sending the updates would place an unnecessary burden
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on the other replicated nameservers which would have to store the RR and shortly after
remove it because its TTL had expired. As a results, the replicated nameservers will
contain all the RRs from the zones they are responsible for as well as the slowly changing
RRs from other zones.

4.8 Security Issues and Fault Tolerance

Our architecture has one serious security hole, namely, it creates a new possibility for DNS
spoo�ng. DNS spoo�ng goes as follows.

A user (pc.client.com) wants to access the Web servers of two competing companies,
www.company-a.com and www.company-b.com. First, the client issues a DNS lookup for
the address of the �rst server (www.company-a.com). The request goes to client's local
nameserver, ns.client.com, which does not have the answer. The local nameserver con-
tacts the nameserver of Company-A, ns.company-a.com, and asks for the IP-address of
the Web server. Company-A's nameserver replies with the address and includes in the
reply a false A-record for the Web server of Company-B, www.company-b.com. The re-
ply, including the false address, is cached at the local nameserver and if the client tries
to access www.company-b.com while the mapping is still cached, the local nameserver will
return the false mapping. The client is thus redirected to whatever server the nameserver
at Company-A claimed was the Web server of Company-B. This problem stems from the
local nameserver's willingness to accept information that it did not ask (the IP-address
of www.company-b.com). Modern versions of nameservers (e.g., BIND) block this security
hole by not accepting RRs they have not asked.

Our architecture is vulnerable to this type of attack if replicated nameservers accept
all information they receive from other nameservers (primary or replicated). In this case,
the attack would be very simple. The administrator of a primary nameserver would only
have to send a false mapping to the replicated nameserver and the false information would
immediately be propagated to everyone on the network. If a client were to request this
information, it would receive both the real information (given by the real primary name-
server) and the false information (given by the imposter). The client could easily choose
to use the wrong address instead of the correct one.

To counter this problem, the replicated nameservers must verify that the RRs they
receive come from a server that is authorized to provide this information, e.g., the primary
nameserver of that zone. We propose the following solution. Each replicated nameserver
is responsible for a zone (each of these zones may contain several DNS zones) and can
only provide information for that zone. When a replicated nameserver receives updates
from a primary nameserver or another replicated nameserver, it must verify that the server
sending the original update is authorized to do so. This requires that we extend the DNS
SOA-type RR to include the zones handled by replicated nameservers. In addition, to avoid
replicated nameservers from sending RRs for non-existing zones, these extended SOA-RRs
need to be signed by a trusted certi�cation entity using the DNS security extensions [18].
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4.8.1 Fault Tolerance

We must have a way of recovering from replicated nameserver crashes. These crashes
present us with two problems. First, clients that were using the crashed server must be
redirected to another server. Second, when the server comes back on-line, it will have a
stale copy of the database and it must get a fresh copy.

To address the �rst problem, we propose that all local nameservers be con�gured with
the addresses of several replicated nameservers. This is similar to con�guring a local
nameserver with the addresses of all 13 root DNS servers in modern DNS. If the client
does not get a reply from a replicated nameserver even after retrying a few times, it can
assume that that server has crashed and can switch to another replicated nameserver. In
this situation the crash of a replicated nameserver is analogous to the crash of a root DNS
server. If the replicated nameserver is acting as the local nameserver for the client, then
the local clients will be without DNS service. This situation is identical to the crash of
a local nameserver in modern DNS and can be handled by installing several normal local
nameservers in addition to the replicated nameserver to be used as backups. These local
nameservers would have the addresses of other replicated nameservers and could provide
name resolution service to the clients.

The second problem, that of stale information, is more serious and more di�cult to
handle. When the crashed server is back on-line it must obtain a fresh copy of the database.
Because the database is on the order of gigabytes, it is infeasible to download the whole
database from another replicated server. We propose the following method for bringing
the database up-to-date. First, all the update messages are tagged with a unique identi�er
(e.g., a counter) in addition to being tagged with the identity of the sender of the update
message. This sender is the primary nameserver that owns the resource record, not the
replicated nameserver that distributes it to the others; this is required to causally order
successive modi�cations. When a server recovers from a crash, it knows the number and
sender of the last update message it has received, and can request another replicated
nameserver to send it all the update messages from that primary nameserver since that
�time.�

The above scheme is su�cient when the replicated server is o�-line for a short period of
time and we only need to reconstruct the parts that have been updated during that period.
In some cases, however, this method may be costly, since the replicated nameserver has to
check for updates for all the DNS zones in the world. Also, should a replicated nameserver
crash so seriously that the entire database is corrupted and must be rebuilt from scratch,
we propose the following strategy. In this strategy, the replicated nameserver �rst performs
zone transfers from the primary nameservers in its zone. When the replicated nameserver
receives a query for a RR it does not have, it contacts another replicated nameserver and
asks for the RR. It also performs a zone transfer for the zone containing the RR from

the other replicated nameserver. As the replicated nameserver receives updates from other
replicated nameservers, it can also perform zone transfers for the zones concerned. This
way, the replicated nameserver will eventually obtain a copy of all the RRs.
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4.9 Conclusion

In this chapter we have presented a new design for managing the DNS database that takes
advantage of recent advances in disk storage and multicast distribution technology. Our de-
sign is based on replicating the entire DNS database on geographically distributed servers,
called replicated servers. Our design has two main features: (i) It is highly responsive
to changes in DNS information and (ii) signi�cantly reduces DNS lookup time. We have
closely studied the issues related to storing the DNS database and evaluated the tradeo�
between the staleness of DNS information and tra�c load on the replicated DNS servers.



Chapter 5

Client Redirection Performance

5.1 Overview

Content distribution on the Web is moving from an architecture where objects are placed on
a single, designated server to an architecture where objects are replicated on geographically
distributed servers and clients transparently access a nearby copy of an object. In this
chapter we study how the di�erent redirection schemes used in modern content distribution
networks a�ect the user-perceived performance in normal Web page viewing. Using both
simulations and experiments with real Web servers we show that redirection schemes that
require clients to retrieve di�erent parts of a Web page from di�erent servers yield sub-
optimal performance compared to schemes where a client accesses only one server for all
the parts of a Web page. This implies that when replicating Web pages, we should treat
the whole page (HTML and images) as a single entity.

5.2 Introduction

Content distribution on the Web is moving from an architecture where objects are placed on
a single, designated server to an architecture where objects are replicated on geographically
distributed servers and clients transparently access a nearby copy of an object [2,3,16,43,
52]. The new architectures are constructed from a set of servers, which we call content
servers, that contain copies of the objects. These copies can be created statically using some
pre-determined rules, or dynamically on-demand depending on the load and client request
patterns. When a client wants to retrieve an object, it contacts a mapping service that
provides the client with an address of a content server that has a copy of the requested
object. There have already been some proposals for such architectures [7, 36, 62] and
several companies have started to o�er dynamic content distribution services over their
own networks [2, 3, 16, 43].

A vital component of a content distribution architecture is a method for redirecting
clients to the content servers. What is common to most of the proposed architectures
is that the client is redirected to the content server by the system. This means that the
system must contain mechanisms for determining what is the best content server for each
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client. On the other hand, the proposed architectures are transparent to the client, i.e.,
they do not require modifying the clients or installing new software at client-side. We will
discuss the details of di�erent redirection methods in Section 5.3.

In this chapter we study how di�erent redirection schemes a�ect the user-perceived
performance. As the measure for performance we use the total time to download all
objects on a Web page, i.e., both the HTML and embedded images. Some redirection
schemes require that the client retrieves some part of a Web page (e.g., the HTML-part)
from one server, and other parts (e.g., embedded images) from another server. If the client
is using persistent connections of HTTP/1.1 [22], this means that the client cannot bene�t
from previous requests that have opened the underlying TCP-congestion window; instead
the client must open a new connection to another server and this connection will initially
su�er from a small congestion window. Of course, if the new server is signi�cantly closer
than the old server, the client can retrieve the remaining objects faster from the new server.

Using simulations and experiments on the Web we will evaluate the performance of
di�erent redirection strategies and how they a�ect the download time of the whole Web
page in di�erent situations. We will evaluate the performance of redirection strategies
using both multiple parallel connections and persistent connections with pipelining.

5.2.1 Related Work

Nielsen et al. [56] studied the performance of persistent connections and pipelining and
their results show that pipelining is essential to make persistent connections perform better
than multiple, non-persistent connections in parallel. Although modern browsers imple-
ment persistent connections, they do not implement pipelining [89]. For this reason the
popular browsers open several persistent connections in parallel to a server.

Recently several companies [2,3,16,43] have begun to o�er content distribution services.
In their services, the content is distributed over several, geographically dispersed servers
and clients are directed to one of these servers using DNS redirection. We will discuss DNS
redirection in more detail in Section 5.3.

Rodriguez et al. [69] study parallel access schemes where the client requests di�erent
parts of one object from di�erent servers. Their scheme is designed for large objects and
is not well suited for typical web page viewing; also it requires modi�cations to client
software. In our work we study the performance of currently employed redirection schemes
which redirect the client to a single server but require no modi�cations to client software.

This chapter is organized as follows. Section 5.3 presents the di�erent redirection
schemes used in real world systems. Section 5.4 describes the model used in our simulations
and Section 5.5 presents the results obtained in the simulations. Section 5.6 presents the
results obtained in experiments on the real network. Section 5.7 discusses the implications
of our results. Finally, Section 5.8 concludes the chapter and presents directions for future
work.
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5.3 Redirection to Servers

Clients can be redirected to servers with several di�erent methods. For example, the origin
server could redirect clients using the appropriate HTTP-reply codes, the client could be
given a list of alternative content servers, or the system could use other mechanisms, such
as DNS redirection. These di�erent mechanisms have all di�erent overheads on the user-
perceived performance which we will discuss in Section 5.7. For the remainder of this
chapter we assume that the system uses DNS redirection (or a similar method) because of
its wide-spread use in the real world.

Currently the content distribution companies redirect clients using DNS redirection
in two di�erent ways. In both redirection schemes the client sends a DNS query to the
authoritative DNS server of the content distribution company which replies with an IP-
address for a content server that the authoritative DNS server deems to be the best for the
client. (The reply can include IP-addresses of multiple servers but modern clients use only
one of them.) The client then contacts the content server and requests the object from it.
The advantage of using DNS redirection is that it does not require any modi�cations to
the client software because typically URLs identify hosts by their names.

The two di�erent schemes are as follows. In the �rst scheme, which we call full redi-
rection, the content distributor has complete control over the DNS mapping of the origin
server. When a client requests any object from the origin server, it will get redirected to a
content server. This scheme requires that either all content servers replicate all the content
from the origin server, or that the content servers act as surrogate proxies for the origin
server. A major advantage of full redirection is that it adapts dynamically to new hot-spots
because all client requests are redirected to geographically dispersed content servers.

The second scheme, which we call selective redirection, goes as follows. The references
to replicated objects are changed to point to a server in the content distribution network.
When the client wants to retrieve a replicated object, it resolves the hostname which
redirects it to a content server. In this scheme, the replicated objects appear to be simply
objects that are served from another server. An advantage of this scheme is that the
content servers only need to have the content that has been replicated. In modern content
distribution networks that use selective redirection, the burden of deciding which objects
to replicate is placed on the content provider. A system using selective redirection is slower
to adapt to hot-spots because it must �rst identify them, change the references to the new
hot objects, and possibly replicate the objects to content servers. In addition, clients that
have cached references to the new hot objects (e.g., caching the HTML page referencing a
hot image) would not be redirected, but would instead go to the origin server thus negating
the bene�ts of using a content distribution network.

5.4 Simulation Model

For the simulations we used the NS network simulator [55]. We used a very simple network
topology and it is shown in Figure 5.1. In Figure 5.1, C is the client, S is the server, and L
is the link between the two. To represent di�erent network conditions we varied the delay,
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C S
L

Figure 5.1: Simulation model

bandwidth, and loss rate on the link L. We used FullTCP-agents at both the client and
server and we set the MSS to 1460 bytes. This is the MSS that an Ethernet-connected
machine would obtain and we have obtained the same MSS on real connections to distant
servers from our local Ethernet. As suggested in [56], we disabled Nagle's algorithm on
the server's TCP agent.

In all of our simulations, the client �rst sent a request to the server, the server replied
with one �le (the HTML-�le). When the client had received all of this �le, it requested
the images from the server.

We observed that because all our HTTP-connections were short, the underlying TCP
connection never progressed beyond slow-start. Therefore the bandwidth of the link had
only minimal e�ect on the overall download time. This is also shown by the graphs in
Figure 5.2 which show that the total download time stays almost constant once the band-
width is greater than 1 Mbit/s. This is also true in the case when the loss rate on the link
is high (Figure 5.2b, averaged over 3000 simulation runs).

Because of the negligible e�ect of the bandwidth, we compared the di�erent redirection
schemes only by varying the round-trip times and loss rates. Our simulation model does
not account for server loads or how the client obtains the redirection; we will discuss these
issues in Section 5.7.

5.4.1 Redirection Schemes

We compared the redirection schemes for two di�erent clients. The �rst one was a client
that does not implement pipelining and opens several persistent connections in parallel and
the second client implemented pipelining. Given the typical number of embedded images
on a page (see Section 5.4.2) and the number of persistent connections opened by popular
browsers (2 or 6, see [89]), we assumed that the client opening parallel connections cannot
retrieve all images with one set of connections. Instead, it �rst sends one batch of requests
and when it receives the replies, it requests the second batch; this matches the behavior of
a client implementing persistent connections without pipelining.

The baseline for our comparisons was a scheme where the client retrieves all object from
the origin server. We compared this baseline scheme to two other schemes which modeled
the full and selective redirections schemes. For the full redirection, we simply used a
shorter round-trip time on the link to re�ect the closeness of the new server. We modeled
selective redirection by having the client retrieve the HTML from the origin server and
being redirected to another server for the images. To model the second server, we simply
used two models from Figure 5.1 in parallel and the only connection between them was
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Figure 5.2: E�ect of bandwidth on download time
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Page HTML Images Parallel
Small 5 KB 10 KB 2 KB

Medium 10 KB 20 KB 4 KB

Large 20 KB 40 KB 8 KB

X-Large 40 KB 80 KB 16 KB

Table 5.1: Di�erent pages used in simulations

when the �rst model had completed its download and it triggered the second model. We
used six di�erent round-trip time values for the servers, 10, 20, 60, 100, 120, and 160 ms.
We have observed that the value of 160 ms is quite typical from Europe to popular web
sites in the US, and the smaller values re�ect conditions within the US.

Our model does not account for the delay caused by a potential DNS lookup to get the
address of the second server. This delay can be high and vary signi�cantly [13], but it is
likely to be small for popular servers. We also assume that the parallel connections do not
interfere with one another and represent them by one connection which retrieves one �fth
of the image data on the page. In reality, the download time of the parallel client would
be dictated by the largest image because the client could not divide the images equally
between all the parallel connections. Modern clients also start requesting embedded images
as soon as they have seen the references to them instead of waiting for the whole HTML
page to download. Our model does not take this fully into account, but the behavior of
our model is appropriate for images that are referenced near the end of the HTML page.

5.4.2 Files

To estimate the size of a Web page, we downloaded all the homepages of the most popular
sites from Hot100.com [30]. We found that the mean �le size is 20 KB. This only includes
the actual HTML for the page and does not include any embedded objects. The mean
amount of embedded image data on a page is 40 KB, the mean number of embedded images
on a page is 15.5, and the mean size of a single embedded image is 2.5 KB. Most of the
HTML pages are at least 5 KB and almost none of the HTML pages are larger than 45 KB.
To retrieve a typical homepage with all the embedded images we need to transfer around
50�60 KB and the total amount of data (HTML and images) can be as high as 250 KB.
We constructed four di�erent sized pages in order to cover as many di�erent real pages as
possible. Table 5.1 shows the di�erent pages and the amount of HTML and image data
on each of them. We also show the amount of image data retrieved by the parallel client
which was equal to one �fth of the total image data.

5.5 Simulation Results

In this section we will present the results from our simulations. We ran simulations for
all the di�erent parameter values (RTT and loss rate) but we only show some of the
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Figure 5.3: Performance of the full redirection scheme

combinations here. The results for the simulation runs not shown here were similar.

5.5.1 Loss Free Conditions

We �rst simulated retrievals under completely loss free conditions. In Figure 5.3 we show
the performance of the full redirection scheme, i.e., retrieving everything from one server.
We plot one curve for each di�erent origin server (RTTo), and a point on a curve shows
the download time relative to the download time from the origin server if we had used a
server with RTT given by the x-axis value for all the objects. For example, consider the
line RTTo = 120ms. This line compares the performance of full redirection when the RTT
to the origin server is 120 ms. The points on this line show the relative download time we
would have received with full redirection if the new server had had an RTT shown on the
x-axis. For example, when the RTT to the new server is 60 ms, the total download time
from that server would be 60% of the time it takes to complete the download from the
origin server with RTT of 120 ms.

The plot shows the download times for a client using parallel connections. We observed
only very small di�erences between di�erent �le sizes.

In Figure 5.4 we show the relative download time of the selective redirection scheme
for a client using parallel connections and for the Medium and Large pages. We plot one
curve for each di�erent origin server (RTTo). A point on a curve shows the download time
relative to the baseline that a client would obtain if the origin server had a round-trip time
of RTTo and the new server had the RTT on the x-axis. The baseline in these graphs
refers to retrieving all object from the origin server with round-trip time RTTo. As we can
see, typically we need the RTT to the new server to be less than 75% of RTTo in order for
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it to worth it to switch to the new server. In Figure 5.5 we show the results for a client
using pipelining. We can see that in this case, the RTT to the new server should be less
than 50% of RTTo.

Comparing Figures 5.4 and 5.5 we see that for parallel connections the slope of the
curves is smaller, meaning that a small reduction in RTT only gets small reductions in
total download time. For pipelining the slope is larger meaning larger gains for small
reductions in RTT. Overall, we see that the maximum gain in download time is around
30% of the baseline. This is achieved when the new server is extremely close (RTT around
10 ms).

As we can see in Figure 5.3, if the origin server is slow (100 ms or more), we can get
impressive gains if we were able to access a nearby server for all of the page. By choosing
to go to a nearby server instead of the origin server for all the of the page we can download
it in 10% of the time it would have taken to get the page from the origin server. The
possible gains of going to a nearby fast server are much greater than the achievable gains
obtained with schemes where the client must switch servers during the download. This
holds for both parallel persistent connections and pipelining connections. We also see that
the schemes which switch servers (Figures 5.4 and 5.5) can obtain at maximum only a 30%
reduction in download time. In the same situation, by going directly to the nearby fast
server, the client would reduce the download time by 90%. In other words, even if the new
server would be fast enough to warrant switching to it, the client would be much better o�
by going to that fast server already for all the objects. We can conclude that under good
network conditions, switching servers during download will give sub-optimal performance

compared to a scheme which redirects the clients to a good server for all the objects.

5.5.2 Simulations with Loss in Network

We then ran the same simulations using a 2% loss rate on all the links in the simulation. The
results in all cases were similar to the ones obtained under loss free conditions. Figure 5.6
shows the performance of the full redirection scheme, i.e., retrieving everything from the
origin server with round-trip time RTTo. As with the no-loss situation, the di�erences
between di�erent �le sizes were very small.

When we compare Figures 5.3 and 5.6, we see that in the no-loss situation, the max-
imum gains are larger than in the situation where there is loss on the link. We believe
this is because the underlying TCP connection is still in slow-start and therefore its RTT-
estimate has not yet adapted well enough to the link RTT. Hence, the RTT-estimates for
the links with small RTTs are too high and discovering a lost packet takes more time than
it would if the TCP connection knew the RTT better.

In Figure 5.7 we show the relative download times of the selective redirection scheme
for a client using parallel connections and Medium and Large pages averaged over 3000
simulation runs.

As we can see, the general form of the curves matches those obtained in loss free
conditions (Figures 5.4 and 5.5). The only di�erence is that the point where switching
servers would become useful is lower than in the loss free case. Furthermore, the maximum
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Figure 5.4: Selective redirection with parallel connections
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Figure 5.5: Selective redirection with pipelining
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Figure 5.6: Performance of the full redirection scheme with loss

gain in download time is less than 20% and for Small pages switching servers always resulted
in a slower download. We believe that the reason for the stricter RTT requirement for the
new server is due to the possibility of losing TCP SYN packets when opening the connection
to the new server. Most of the downloads took less than 2 seconds from start to �nish, but
a lost SYN packet caused a 6 second timeout. This slows down the connection to the new
server considerably and gives a substantial advantage to using the persistent connection
to the old server. Also, the TCP connections are in slow-start and do not therefore have
an accurate estimate of the RTT and discovering lost packets will take longer on the new
connection. If a packet on the persistent connection is lost, it will be discovered faster,
either because of duplicate ACKs or because the TCP agents have an idea of the connection
round-trip time and know when to expect packets.

The results con�rm our conclusions from the loss free case. It is preferable not to

switch servers during download of a single page. Switching servers greatly limits the gains
in performance obtained from using a nearby server for all the objects. This means that
a system which forces clients to switch servers during the download of a single page will

provide clients with sub-optimal service; either the new server is not fast enough, or even
if it is, the client should have been redirected to the fast server for all the objects.

5.6 Experiments

To validate the results obtained from our simulations, we ran several experiments in
which we retrieved objects from real, replicated web sites. We used three di�erent sites,
Apache [6], Debian [15], and Squid [81], and chose several mirror servers of those sites for
our experiments. From each of the three main sites we selected some �les that matched
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Figure 5.7: Selective redirection with parallel connections with loss
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Experiment RTTA RTTB AB BB
Apache-1 80 ms 25 ms 0.77 0.14

Apache-2 60 ms 50 ms 1.34 0.58

Debian-1 100 ms 40 ms 0.98 0.25

Debian-2 180 ms 90 ms 0.97 0.72

Debian-3 80 ms 65 ms 1.26 0.79

Squid-1 200 ms 45 ms 0.73 0.20

Squid-2 70 ms 45 ms 1.03 0.59

Table 5.2: Results from experiments

the �les in our simulations as closely as possible. For Apache and Squid our �les were close
to the Small page in Table 5.1, and for Debian they were similar to the Medium page.

Our goal was to have our client run like a modern browser, i.e., no pipelining. We chose
one HTML �le and one image �le from each site and divided the servers in pairs. The
client would �rst request the both �les from both servers in the pair and then request the
HTML from the �rst server the image from the other server in the pair. Before requesting
the objects we performed a DNS query on the hostnames in order to eliminate the e�ects
of long DNS lookups. We ran our experiments several hundred times during di�erent times
of day and on several days.

We show the results from 7 of our experiments in Table 5.2. In each experiment we
used a di�erent pair of servers to get as many di�erent combinations as possible. The
RTTs to the two servers shown in columns RTTA and RTTB re�ect typical RTT values
from our client machine to the servers in the experiment. We used server A as the baseline
and show the relative download times for two other download schemes in columns AB and
BB. Column AB refers to experiments where the client retrieved the HTML from server
A and the image data from server B. In column BB we show the relative download time
when the client retrieved everything from server B.

The results we obtained in our experiments closely match those we obtained in our
simulations. In fact, for all the experiments shown in Table 5.2, our simulations correctly
estimated whether switching servers would result in a gain in relative download time or
not.

5.7 Discussion

Our results show that the client can download a whole web page fastest if it is using persis-
tent connections to a nearby content server (possibly using parallel persistent connections
for embedded images). Of the two redirection schemes, full and selective redirection, full
redirection achieves this goal easily since all requests to the origin server are redirected to
a nearby content server.

With selective redirection it is possible to achieve the same e�ect by ensuring that all
objects on a web page are replicated in the same way and thus client requests for the
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objects would be redirected to the same content server. This puts the burden of ensuring
e�ciency on the party deciding the replicated objects. Some modern systems put this
responsibility on the content provider by allowing the content provider to tag individual
objects for replication. We feel that ensuring e�cient delivery of content to the clients
should be the responsibility of the content distributor ; in fact, e�cient delivery of content
is exactly the reason why content providers enlist the services of content distributors.

Our work is based on the assumption that the client is able to open persistent connec-
tions to all servers, although we do not assume pipelining of requests. Even though the
content provider may run a web server that does not implement persistent connections,
the content distributor can implement persistent connections in its own content servers. If
the content provider's web server does not implement persistent connections then the RTT
threshold for switching servers would be higher (because new connections to the origin
server would go through slow-start again). If a suitable content server exists, the client
would be better o� using that server for all objects.

Our simulation model does not account for two important factors, namely server loads
and redirection costs. A major reason for distributing content on several servers is to take
o� load from the origin server and distribute it among the content servers. Increasing the
load on the origin server in our model would have the e�ect of making it more attractive
to switch servers, i.e., it would make the RTT-threshold for switching lower. On the other
hand, our model assumes that the client knows the address of the new content server. In
reality, the client would have to obtain this address somehow before contacting the server.
This would make switching servers less attractive, i.e., raise the RTT-threshold.

The cost of getting the redirection depends on the redirection technique used. If the
system is using DNS redirection, then the client can expect to spend at least 200 ms for
getting the address of the content server [35]. In the worst case, the DNS lookup can
take several seconds to resolve. In our simulations and experiments all the downloads took
only a few seconds at maximum and a long DNS lookup would have caused a signi�cant
slow-down for switching servers. If the client needs to contact the origin server to get the
redirection, this would add at least one round-trip time to the origin server.

5.8 Conclusion

In this chapter we have evaluated the performance of the di�erent client redirection schemes
used in modern content distribution networks. Using both simulations and experiments
on the real network we have found that redirection schemes, which force clients to retrieve
objects on a web page from multiple servers, always yields sub-optimal performance in
terms of the overall client download time compared to schemes which allow the client to
retrieve all objects from one, good server. This implies that when replicating web pages, we
must treat the HTML-page and the embedded images as a single entity and replicate either
all or none of them. Full redirection achieves this goal and yields superior performance
compared to selective redirection which may split the web page between several servers.

In our future work we will expand our simulation models to include several clients and
explore the e�ects of di�erent network topologies on the results. We will improve our
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simulation models by including other parameters, such as server load. We will also do a
more extensive set of experiments to validate our conclusions.
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Chapter 6

Replication in Content Distribution

Networks

6.1 Overview

Recently the Internet has witnessed the emergence of content distribution networks (CDNs).
In this chapter we study the problem of optimally replicating objects in CDN servers. In
our model, each Internet Autonomous System (AS) is a node with �nite storage capacity
for replicating objects. The optimization problem is to replicate objects so that when
clients fetch objects from the nearest CDN server with the requested object, the average
number of ASs traversed is minimized. We formulate this problem as a combinatorial op-
timization problem. We show that this optimization problem is NP complete. We develop
four natural heuristics and compare them numerically using real Internet topology data.
We �nd that the best results are obtained with heuristics that have all the CDN servers
cooperating in making the replication decisions. We also develop a model for studying the
bene�ts of cooperation between nodes, which provides insight into peer-to-peer content
distribution.

6.2 Introduction

Recently the Internet has witnessed the emergence of content distribution networks (CDNs).
CDNs are targeted for speeding up the delivery of normal Web content and reduce the load
on the origin servers and the network. CDNs, such as Akamai [3] or Digital Island [16],
distribute content by placing it on content servers which are located near the users. A
content provider can sign up for the service and have its content placed on the content
servers. The content is replicated either on-demand when users request it, or it can be
replicated beforehand, by pushing the content on the content servers.

In this chapter we study the problem of optimally replicating objects in CDN servers.
We consider each AS as a node in a graph with one CDN server with �nite storage capacity
for replicating objects. The optimization problem is to replicate objects so that the average
number of ASs traversed is minimized when clients fetch objects from the nearest CDN
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server containing the requested object. We formulate this problem as a combinatorial
optimization problem and show that this optimization problem is NP complete. We develop
four natural heuristics and compare them numerically using real Internet topology data.
Our results show that the best results are obtained with heuristics that have all the CDN
servers cooperating in making the replication decisions. We also develop a model for
studying the bene�ts of cooperation between nodes in a peer-to-peer networking context.

This chapter is organized as follows. Section 6.3 presents the network topologies we
used. In Section 6.4 we develop our cost model. Section 6.5 presents the replication
heuristics we have developed and Section 6.6 presents our evaluation methods and results.
Section 6.7 presents peer-to-peer content distribution and develops and evaluates a model
for cooperation in peer-to-peer networks. Section 6.8 discusses related work. Finally,
Section 6.9 concludes the chapter and presents directions for future work.

6.3 Network Model

Our network model is based on the actual Internet AS topology. To construct the topology,
we will use data provided by NLANR [57]. This data represents summaries of Internet
routing data collected in the Route Views Project [74] from 1997 to beginning of 2000.
These summaries provide information about which ASs are connected to each other. From
these summaries we constructed a graph where the nodes are the ASs and the edges are the
inter-AS connections. We then calculated the shortest paths between all the node pairs,
and used this data to form a distance matrix for the network.

As discussed in [25], this method is slightly inaccurate because we cannot infer that all
the connections are valid. For example, consider a small ISP that buys connectivity from
two bigger ISPs. For each of the providers, our graph will show an edge between the small
ISP and the provider, but in reality the small ISP would not route tra�c from one of its
providers to another. This is not likely to be a problem, though, since in most cases the
two providers in this case either have a direct link between them or are able to connect via
a common provider.

A CDN tries to put its content servers as close to users as possible. By placing the
clients and the content servers (storage nodes in our network) in the same nodes, we can
simulate the ideal redirection where all clients are always redirected to the closest server
(the redirection in this case is static). By studying di�erent replication strategies we can
determine which strategies a CDN should use when deciding which objects to replicate.
Because a CDN has complete knowledge of its network, we can use strategies which require
global information or cooperation.

6.3.1 Network Topologies

We downloaded several di�erent �les from NLANR [57], each describing the AS topology
on a di�erent day. Table 6.1 shows the di�erent topologies we used, the number of ASs in
each one, the number of leaf ASs, the average length of the shortest path between any two
nodes, and the average distance of the shortest path between any two leaf nodes.
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Number Number of Average Avg. leaf
Date of nodes leaf nodes distance distance

97/12/21 3184 1423 3.76 4.34

99/01/11 549 136 3.40 4.18

99/12/08 767 222 3.03 3.38

99/12/11 1477 502 3.45 4.10

Table 6.1: AS topologies

From topologies in Table 6.1 and other topologies we downloaded (not shown), we see
that the average distance between nodes tends to increase as the number of nodes in the
network increases. It is also important to note that these topologies do not contain all
of the ASs in the Internet, but only a subset of them. Therefore, the full Internet AS
topology would likely have a higher average distance than any of the topologies we used.

6.4 Cost Model

We consider a network where the nodes are the autonomous systems (ASs). For simplicity,
we assume that one AS is the same as one ISP. We have I ASs in the network. AS i,
i 2 1; 2; : : : ; I, has Si bytes of storage capacity and has clients that request objects at
aggregate rate �i.

We have J objects. Object j has a size of bj, j 2 f1; 2; : : : ; Jg and a request probability
pj which is the probability that a client will request this object. We assume that client
request patterns are homogeneous, i.e., the pj 's are the same for all ASs. But this model
can be extended to include other request patterns by using pij, which would be the request
probability for object j from AS i.

We have the following variables:

xij =

(
1 if object j is stored at AS i;

0 otherwise:

The storage is constrained by the space available at AS i, that is

JX
j=1

bjxij � Si i = 1; : : : ; I

The goal is to choose the xij's so that a given performance metric is minimized. In
this chapter our goal is to minimize the average number of inter-AS hops that a request
must traverse. This re�ects the download time of an object to some degree and can thus
be used as an indicator of the user perceived latency.

We denote the matrix of all xij 's by x. Furthermore, we assume that each object j is
initially placed on an origin server; we denote by Oj the AS that contains this origin server.
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We assume that all of the objects are always available in their origin servers, regardless of
the placement x. We denote the placement of objects to origin servers as xo. Note that
this origin server placement does not count against the storage capacity SOj

.
The average number of hops that a request must traverse from AS i is

Ci(x) =
JX
j=1

pjdij(x) (6.1)

where dij(x) is the shortest distance to a copy of object j from AS i under the placement
x. This nearest copy is either in the origin AS Oj , or in another AS where the object has
been replicated. We assume that the client is always redirected to the nearest copy. In this
chapter we do not consider the mechanisms used to redirect clients, but instead assume
that such a mechanism is in place.

Let � =
P

i �i be the total request rate of all ASs. The average number of hops from
all ASs is then

C(x) =
1

�

IX
i=1

�iCi(x)

=
1

�

IX
i=1

JX
j=1

�ipjdij(x)

=

IX
i=1

JX
j=1

sijdij(x) (6.2)

where sij = �ipj=�. The placement x is subject to

JX
j=1

bjxij � Si i = 1; : : : ; I

This cost function represents the long term average cost. For a large number of objects
and ASs, it is not feasible to solve this problem optimally; in fact, as we show in the next
section, this problem is NP-complete.

6.4.1 Proving NP-Completeness

In order to prove that our optimization problem is NP-complete, we �rst formulate the
problem as a decision problem. Given a target number of hops T , we ask is there a
placement x such that

IX
i=1

JX
j=1

sijdij(x) � T
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subject to

JX
j=1

bjxij � Si i = 1; : : : ; I

We prove the NP-completeness of this problem by showing that it belongs in NP and
then we reduce the knapsack problem to a special case of our problem. This proves the
NP-completeness.

The problem is easily seen to be in NP. Given a placement x and number of hops T ,
we can verify in polynomial time whether the placement results in an average cost of less
than T hops.

Next, we consider the special case where S1 = S, Si = 0, i = 2; : : : ; I, �i = �,
i = 1; : : : ; I, pj = p, j = 1; : : : ; J , i.e., we have only one AS on which to place objects, all
ASs have the same request rate, and all objects are equally popular.

Recall that each object j is always available at the origin AS Oj . The cost of getting
object j for a client in AS i is dij(xo). Because all clients always go to the nearest copy,
placing copies on the only available AS can only decrease the cost for any client, i.e.,
dij(x) � dij(xo) for all i and j. We de�ne the utility of placing object j on AS i as
u(j) =

P
i[dij(xo) � dij(x)], i.e., the decrease in number of hops we would obtain if we

placed object j in the AS.
Given target decrease in number of hops T 0 we now ask if there is a set of objects J 0

such that

X
j2J 0

bj � S and
X
j2J 0

u(j) � T 0

This problem is identical to the well-known NP-complete knapsack problem [26]. Given
that our placement problem belongs in NP and that the knapsack problem reduces to it,
we know that our placement problem is NP-complete.

6.5 Replication Heuristics

Because our optimization problem is NP-complete, �nding the optimal solution is not
feasible. Therefore we have designed several heuristics that use the available information
in di�erent ways in order to get the best results.

In our simulations we use the following heuristics.

1. Random. Assigns objects to storage nodes randomly subject to the storage con-
straints. We pick one object with uniform probability and one node with uniform
probability, and we store the object in that node. If the node already stores that
object, we pick a new object and a new node. As a result, an object can be assigned
to several nodes, but a node will have at maximum one copy of an object.
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2. Popularity. Each node stores the most popular objects among its clients. The node
sorts the objects in decreasing order of popularity and stores as many objects in this
order as the storage constraint allows. The node can estimate the popularities by
observing the requests it receives form its clients. This heuristic does not require the
node to get any information from outside of the node. Note that in our case, the
object popularities pj are the same across all nodes, hence all the nodes will store
the objects in the same order but subject to di�erent storage constraints.

3. Greedy-Single. Each node i calculates Cij = pjdij(xo) for each object j. This rep-
resents the contribution of an individual object to (6.1) under the initial placement.
The node then sorts the objects in decreasing order of Cij and stores as many objects
in this order as the storage constraint allows. The popularities are obtained as in the
Popularity heuristics, but the CDN also needs information about the network topol-
ogy in order to estimate the dij 's. Note that the Cij's are calculated only once under
the placement xo and are not adjusted when objects are stored. This means that
every node stores objects independently of all the other nodes and no cooperation
between nodes is required.

4. Greedy-Global The CDN �rst calculates Cij = �ipjdij(xo) for all nodes i and
objects j. Then the CDN picks the node-object-pair which has the highest Cij and
stores that object in that node. This results in a new placement x1. Then the CDN
re-calculates the costs Cij under the new placement and pick the node-object-pair
that has the highest cost. We store that object in that node and obtain a new
placement x2. We iterate this until all the storage nodes have been �lled.

We do not consider any variants of these base heuristics, such as using popularity
divided by object size, but evaluate only the performance of the base heuristics. Di�erent
variants of these heuristics have been studied in the context of web caching (see [33] and
references therein) and any such improvements could be used directly to enhance the
performance of our heuristics.

6.6 Evaluation of Heuristics

We evaluated the performances of our heuristics using the topologies from Section 6.3.1.
We ran each heuristic on each topology using di�erent parameters for object popularity
and storage capacity in the nodes.

We assigned the popularities to the objects from a Zipf-like distribution where we varied
the parameter from 0.6 to 1.0. Values between 0.6 and 0.8 have been typically observed
in Web proxy tra�c [10]. Much higher values, up to 1.4, have also been discovered in the
context of popular Web servers [59]. Object sizes were randomly drawn from a uniform
distribution. The storage capacity at each node was �xed to some percentage of the total
size of the set of objects. We varied this percentage in the course of the experiments. All
the client nodes had the same request rate �.
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We placed all the content servers at the leafs of the network, i.e., for all non-leaf ASs
we set Si = 0. Even though this assignment of storage capacity is arti�cial, it allows us
to study the performances of our heuristics better. By placing all the storage capacity
and objects at the edges, the average number of hops needed to obtain an object is higher
than with a more realistic assignment. This makes it more important to replicate the right
objects and lets us see more clearly the di�erences between our heuristics.

The baseline for our experiments was the initial placement xo which we obtained by
randomly assigning objects to storage nodes. We compared the performance of each of the
heuristics to this baseline and report the relative performance obtained with each heuristic.
Because the memory requirements for the experiments grow with the product IJ , we were
not able to run all experiments for all the topologies.

Figure 6.1 shows the results from experiments with 1000 objects. We only show results
for two topologies, but we observed that the results for the remaining two were similar to
the two shown here. On the x-axis we plot the amount of storage at a node as percentage
of the total size of the objects. On the y-axis we plot the performance relative to the
baseline. In each graph, we plot di�erent curves for di�erent heuristics and di�erent values
of the Zipf-parameter (0.6, and 1.0). Note that we only plot the Random heuristic with
Zipf-parameter 1.0. The performance of the Random heuristic was similar for the other
Zipf-values. The curves of the other heuristics for Zipf-values between 0.6 and 1.0 was
between the curves plotted.

From Figure 6.1 we can see that Greedy-Global is the best performing heuristic. The
second best is Greedy-Single, followed closely by Popularity. Random heuristic is consis-
tently the worst and does not achieve substantial reductions in number of hops, even for
large storage capacities. As we mentioned, the performance of Random did not change
much with di�erent Zipf-parameter values.

As Figure 6.1 shows, the gains increase logarithmically with increased storage capacity.
The main determining factor is the Zipf-parameter value. The larger this value is, the
smaller is the number of objects generating a large amount of requests. Thus, it is easy to
signi�cantly reduce the cost if only a small number of objects is very popular. To reduce
the number of hops by 50%, we need only a small amount of storage for parameter 1.0 and
up to 25% of total data set for parameter value 0.6.

In Figure 6.2 we plot the results from experiments with 10,000 objects. Due to memory
limitations, we were not able to run Greedy-Global for all the topologies, therefore it is not
shown on the plots.

The results are very similar to the results from the previous experiment. Random is
still the worst in terms of performance, but the di�erence between Popularity and Greedy-

Single has decreased. This is because as the number of objects grows, the individual object
popularities will get smaller. Therefore, the contribution of an individual object's retrieval
cost to the global cost (6.2) will get proportionally smaller. Hence, the popularity of the
object becomes more important in determining the cost. The product of popularity and
distance used by Greedy-Single is still a slightly better indicator, but the di�erence is
minimal.

From our results we can conclude that the best performance is obtained when the
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Figure 6.1: Experiments with 1,000 objects
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Figure 6.2: Experiments with 10,000 objects
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object replication is coordinated by a single source, in our case, this would be the CDN.
The di�erence in performance between Greedy-Global and the other two heuristics is quite
signi�cant, especially for small Zipf-parameter values. In Figure 6.1 we can see that the
largest improvements in performance are up to 24%. This result shows that a CDN should

use a coordinated replication strategy and not let the CDN servers act on their own.

6.7 Peer-to-Peer Content Distribution

We now introduce a new form of content distribution, namely peer-to-peer content distri-
bution. Peer-to-peer networks have recently emerged as a new form of content distribution
and are mainly used to share individual �les between users. In peer-to-peer networks, such
as Napster [51], or Gnutella [28], individual users decide to share �les with others. With
the help of a directory service, users can determine where di�erent �les can be downloaded
from. While this new model does not directly compete with the traditional Web browsing
model, it is establishing itself as a means for distributing larger �les, such as applications or
music, between users. Because peer-to-peer networks are made up of individual users, we
cannot use strategies which require global information and coordination of nodes as with
CDNs. Instead we must restrict ourselves to strategies that need only locally available
information; one example of such strategy is the Popularity heuristic.

As before, we assume that one AS in our network corresponds to one ISP. We can view
the storage capacity in an AS as the aggregation of the peer-to-peer storage o�ered by the
users in that AS. In a similar vein, xij = 1 means that at least one user in AS i has a copy
of object j. We assume that the cost of retrieving objects from other users in the same
AS is negligible; this is consistent with our de�nition of retrieval cost in Section 6.4. In
this section we will investigate the bene�ts of cooperation between the users in di�erent
ASs. Our goal is to see if the users in a peer-to-peer network could gain anything from
cooperating with other nearby users.

We will now develop a cooperation model for peer-to-peer content distribution under
the popularity heuristic. For simplicity and ease of notation, we shall assume throughout
this section that all objects have the same size, i.e., bj = b for j = 1; : : : ; J .

Consider two ASs, A and B. Denote the shortest path between them by DAB. Let
K be the number of objects that each AS can store. We do not assume anything about
the relationship between the two ASs, except that the distance between them is DAB. In
particular, we do not assume that one is the access provider of the other one. We assume
that �A = �B .

If both ASs act independently, they would both cache the K most popular objects and
the average number of hops for requests from A and B would be

�A
�A + �B

JX
j=K+1

pjdAj +
�A

�A + �B

JX
j=K+1

pjdBj

=
1

2

JX
j=K+1

pjdAj +
1

2

JX
j=K+1

pjdBj (6.3)
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We now consider the case where the two ASs cooperate and do not necessarily both
store the same objects. We assume that both of them store a copy of the L most popular
objects (L � K), and that in addition A stores objects (L+1); : : : ;K, and B stores objects
(K +1); : : : ; (2K �L). Because the request rates are identical, it does not matter how the
objects (L+1); : : : ; (2K�L) are shared between A and B. Note that because of the same
reason, we only need to consider replicating objects in A and B and not in the intermediate
nodes.

The average number of hops for requests from A and B under this scheme is

1

2

2K�LX
j=K+1

pjDAB +
1

2

JX
j=2K�L+1

pjdAj

+
1

2

KX
j=L+1

pjDAB +
1

2

JX
j=2K�L+1

pjdBj

=
1

2

2K�LX
j=L+1

pjDAB +
1

2

JX
j=2K�L+1

(pjdAj + pjdBj) (6.4)

The di�erence between (6.3) and (6.4) is

1

2

2K�LX
j=K+1

(pjdAj + pjdBj)�
1

2

2K�LX
j=L+1

pjDAB (6.5)

If (6.5) is greater than zero, then it is better for A and B to cooperate. By assuming
dAj = dBj = davg, we can calculate the value of davg where cooperation becomes the
preferred strategy. The equation becomes

1

2

2K�LX
j=K+1

(pjdavg + pjdavg)�
1

2

2K�LX
j=L+1

pjDAB > 0 (6.6)

Solving for davg , we get

davg >
DAB

2

P2K�L
j=L+1 pjP2K�L
j=K+1 pj

(6.7)

If (6.7) holds, then it is better for A and B to cooperate. Because davg is likely to be
reasonably stable over long intervals and because pj's are known to both parties, A and B
can use (6.7) as a quick test to see whether they could gain anything by cooperating. For
the test, A and B either need to specify the value of L or verify equation (6.7) over several
values of L.

In the following, we will consider two values for DAB , namely 1 and 2. If DAB is equal
to 1, then A and B are neighbors. We plotted (6.5) for several Zipf-parameter values,
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average distances davg , and values of K, and in all cases, cooperation is almost always
superior to a non-cooperating strategy. In some instances, however, the di�erence between
the two is small.

In Figure 6.3 we show typical plots of (6.5). In these plots, we have 1,000 objects
available and both nodes have capacity to store 50 objects, or 5% of the data set. We
show two plots for two di�erent values of the Zipf-distribution parameter. On the x-axis
we plot the value of L, i.e., the number of objects stored at both A and B, and on the
y-axis we show the value of (6.5), that is, the di�erence between individual and cooperative
strategies in hops. If the di�erence is positive, then cooperation is better.

As we can see from the plots in Figure 6.3, there are always some values of L for which
cooperation gives better results, but in some cases the gains are small. We can see that as
davg gets smaller, the gains become smaller. This is no surprise since a small davg means
that the requested objects are typically already very close and cooperation would not help
much. We also see that as davg increases, the potential gains increase signi�cantly.

Even though a gain of 0.2 hops may not seem much, it is important to note that
the di�erence between Popularity heuristic and Greedy-Single was typically less than 0.05
hops. The di�erence between Popularity and Greedy-Global was 0.1�0.15 hops. Therefore,
two cooperating nodes using the Popularity heuristic would obtain signi�cantly better
performance than they could hope to obtain by acting independently. We can conclude
that cooperation is much more e�cient at reducing the cost than changing a heuristic from
a popularity based heuristic into a greedy one.

If DAB is equal to 2, then A and B are separated by one AS. One example of this case
is shown in Figure 6.4 where we have three nodes, one parent and two children. In this
case, the cooperation would happen between the children. Figure 6.5 shows the graphs for
this case.

Comparing Figures 6.3 and 6.5 we can see that the gains get smaller as DAB increases.
When DAB increases even further, cooperation will no longer be bene�cial to A and B.
This is to be expected, since in the network topologies we used, the average distance
between leaf nodes was around 4 and therefore the distance between A and B would be
roughly the same as the distance to the origin server.

We also investigated cases where there are a very large number of objects in the network.
In these cases, the general form of the gains matches those in Figures 6.3 and 6.5, but the
actual gain is slightly lower. This is because the storage nodes can only hold a very small
fraction of the objects, and even two nodes co-operating cannot hold enough objects to
reduce the average number of hops signi�cantly. However, even in these cases, cooperation
yielded a smaller average number of hops than not cooperating. For example, with 1
million objects and K equal to 2000, the maximum gain was around 0.2 hops as opposed
to 0.27 with 1000 objects and K = 50 (for davg = 6).

6.8 Related Work

Related work on replicating content has mostly concentrated on the problem of placing
the replica servers for one origin server. In this chapter we consider a more global case
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Figure 6.3: Gain from cooperation for K = 50, 1000 objects
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A

C

B

Figure 6.4: 3-way cooperation

where we have content from several origin servers and we decide which objects to replicate
on the replica servers.

In both [41] and [12], the authors consider the problem of placing replicas for one
origin server on a tree topology. While the real Internet topology is not a tree, this simpler
approach allows the authors to develop optimal algorithms. The tree-approach may not
generalize, because it would require that the trees for di�erent origin servers overlap at the
replica sites which cannot be guaranteed without a manual selection of the replica sites.
Also, in [41], the algorithm is of a high computational complexity O(N3M2).

In [61] the authors present their algorithms for placing server replicas in a CDN. They
assume that the replicas are complete replicas and they do not study replicating individual
objects; in our work we make replication decisions on a per-object granularity. They
formulate the problem as the NP-complete K-median problem, develop heuristics and
evaluate their performance. They only consider placing replicas for a single origin server;
our heuristics replicate objects from all the origin servers. All of their heuristics require
information about the network topology as well as client request loads. Also, in their work,
all the replicas act independently and they do not study any cooperating schemes.

In [38] the authors consider the placement of intercepting proxies inside the network to
reduce the download time. They present optimal solutions for simple topologies, such as
line and ring, and consider the case of placing proxies for a single server in a tree topology.
Relying on intercepting proxies requires that routing is stable during the lifetime of the
connection.

6.9 Conclusion

In this chapter we have studied the problem of optimally replicating objects in CDN servers.
We treat each AS as a node with �nite capacity for storing objects. Our optimization
problem is to replicate objects so that when clients fetch objects from the nearest CDN
server, the average number of ASs traversed is minimized. We have formulated this problem
as a combinatorial optimization problem and have shown it to be NP complete.
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Figure 6.5: Gain from cooperation for DAB = 2, K = 50, 1000 objects



118 CHAPTER 6. REPLICATION IN CONTENT DISTRIBUTION NETWORKS

We have developed four natural heuristics and compared them numerically using real
Internet topology data. Our results show that the best performing heuristic is Greedy-
Global which has all the CDN servers cooperating. The di�erence in performance between
Greedy-Global and the simpler heuristics was up to 24%.

We have also studied peer-to-peer content distribution and developed a model for study-
ing the bene�ts of cooperation between nodes. Our evaluation of the cooperation model
shows that nodes using simple heuristics and intelligent cooperation can get signi�cant
performance gains.

The �eld of content distribution and peer-to-peer networks has signi�cant potential for
future research. Our future work will look more closely into inter-node cooperation and
investigate the optimization problem more closely in order to establish lower bounds on the
achievable performance. We also plan to extend our cost model to include other important
factors, such as network tra�c or server load.



Chapter 7

Replication in Peer-to-Peer

Communities

7.1 Overview

A peer is a host that intermittently connects to the Internet, typically changing its IP
address at each new connection. In a P2P �le-sharing community, each peer dedicates
a fraction of its disk storage and access bandwidth to the community. We argue that
the performance of peer communities can be signi�cantly enhanced if the peer community
carefully coordinates the replication of its content. We distinguish between two types
of coordinated peer communities: content caches, for which content can be retrieved from
outside the community if unavailable from within the community; and peer clubs, for which
all content must be retrieved from inside the community. For both peer caches and clubs,
we study the optimal replication of content. We formulate an integer programming problem
that provides the exact optimal (albeit academic) solution. We then provide a number of
adaptive, distributed algorithms for replicating the content on-the-�y. Our algorithms
combined with a distributed least-frequently-used (LFU) replacement policy are shown to
provide near-optimal replication. We also provide methods for handling hot-spots.

7.2 Introduction

One of the most compelling uses of the Internet today is P2P �le sharing of multimedia
content. Morpheus, the most popular P2P application today with on average 500,000
simultaneous users, provides sharing for MP3 music �les (typically in the 3-5 Mbyte range)
and video �les (today, typically in the 5-100 Mbyte range) [21,48]. This multimedia content
is shared among peers, which are hosts that intermittently connect to the Internet, typically
changing their IP addresses at each new connection. Each peer dedicates a fraction of its
disk storage and access bandwidth to the P2P application.

For many university campus networks, P2P content sharing is the dominant tra�c
type [11]. Campus peers are often independently retrieving the same audio and video
content from peers outside the campus, clogging Internet-to-campus pipes and wasting

119
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aggregate peer storage [11]. We argue that a university campus can make more e�cient use
of its resources (WAN bandwidth and peer storage) if the peers in the campus coordinate
the replication of their shared content. For example, it is unnecessary that a large fraction
of campus users download the same popular MP3s from outside the campus. Instead, the
campus peers could maintain a limited number of copies of popular audio/video objects,
and the users could access the popular objects from those copies.

The university campus is a special case of what we refer to as a peer community. A
peer community is a collection of peers that can coordinate the replication of content
across the community of peers for the common good of the community. Each peer in a
peer community (i) shares bandwidth, storage and content with the rest of the peers in
the community; (ii) has intermittent connectivity, that is, �goes up and down�; (iii) works
in conjunction with the other peers to dynamically manage the replication of content. We
distinguish two types of peer communities: content caches and content clubs.

� In a content cache, a peer �rst tries to access the desired content from other peers
in the community; if the content is unavailable from the community, the community
obtains the content on-demand from an outside source (for example, from an external
P2P �le-sharing system, an external Web server, or from some content repository).
The peers in a university or corporate campus can coordinate to form a content
cache. Using the storage in its customers' hosts, a high-speed residential ISP could
also create a content cache.

� In a content club, users subscribe to the community to have the right to access any
of the audio/video content that the community makes available through its peers.
From time to time, the community injects new content into the community of peers.
When a peer wants to access an object and the object is unavailable in the community
(either because there is no copy of the object in the community or because all the
peers with the object are disconnected), then the peer does not have access to the
object.

Coordinating the replication of content is central to a peer community. There are
several approaches to replicating content. Serverless �le systems, such as Farsite [20],
provide the strong persistence of a traditional �le system by replicating each �le the same
number of times (e.g., 3 times). However, the goals of a �le system and a content sharing
system are di�erent. File systems strive for strong persistence whereas content sharing
systems should strive to satisfy user requests as frequently as possible. Another approach
is to allow the content to replicate itself across the peers without coordination, as done
today in �le-sharing systems such as Napster, Gnutella and Morpheus. Whenever a peer
wants to access an object, the peer downloads the object (if available) and puts a copy
of the object in its shared storage. However, as mentioned above, this non-coordinated
approach leads to excessive replication of popular content, and can also be wasteful of
bandwidth.

Schemes for replicating content in a peer community should solve the following di�cult
problems:
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� Performance: We want to replicate the content as a function of content popularity
in order to maximize the probability that requests will be satis�ed within the commu-
nity (that is, the �hit probability�). We have found the issue of popularity-dependent
replication to be crucial for a peer community.

� Adaptive: We want the content replication to adapt as object popularities change
and new objects are introduced into the community.

� Distributed: We want the replication mechanism to be distributed, without relying
on centralized servers for coordination.

Another important component of a peer community is a means for locating content.
Speci�cally, if a peer X wants an object o, then the peer community should provide X
with the IP address of at least one up peer, say Y, which has a copy of o (assuming
that some up peer in the community has a copy). Peer X can then directly access o
from Y . In the past few years a number of substrates have been designed for locating
content [23,28,63,75,83,95] in a community of nodes. This chapter is not concerned with
the design of such a substrate; instead, we build replication schemes which sit on top of a
content-location substrate.

Figure 7.1 plots the bene�ts of coordinated replication over non-coordinated replication.
In this �gure we use a content cache of 100 peers, with each peer being up 50% of the time.
Figure 7.1 plots the hit probability as a function of the number of objects that can be placed
in each peer's shared storage space. Our focus is on large audio and video objects; thus
we are concerned with relatively small peer storage capacities. The �gure assumes that
requests for the di�erent objects follow a Zipf distribution with parameter .8. Figure 7.1 has
two curves. The lower curve is the hit probability for the case when a peer independently
retrieves and stores content, without regard to the other peers in the community. It is
calculated by summing the probabilities in the Zipf distribution up through the number
of objects that can be stored locally. The upper curve is the hit probability that can
be achieved with coordinated replication. It is obtained with the distributed replication
algorithms described in Section 3. This curve clearly shows the dramatic improvements
that can be obtained from coordinated replication, even when each peer is up only 50% of
the time.

After reviewing the related work in Section 7.3, we formulate the problem of optimal
replication of content over a community of peers in Section 7.4. Taking explicitly into
account peer-up probabilities, we formulate an integer programming problem, and indicate
how the problem can be e�ciently solved by dynamic programming. This optimization
theory is admittedly �academic�. It assumes a priori knowledge of object request probabil-
ities, when indeed these probabilities are changing and new objects are being introduced
daily. Nevertheless, the theory enables us to obtain upper bounds on what can be achieved
by an adaptive algorithm, and gives insight into how objects should be replicated. In
Section 7.5 we consider content caches, that is, communities for which it is possible to
retrieve content from outside on-demand when the content is unavailable inside. We pro-
pose a series of fully distributive, adaptive algorithms for content replication. We �nd that
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Figure 7.1: Bene�ts of coordinated replication

the object replacement policy at each of the individual peers plays an important role in
performance. In particular, a simple retrieval scheme combined with a distributed form of
least-frequently-used (LFU) replacement provides near optimal results. In Section 7.6 we
consider content clubs, that is, communities for which all content must be retrieved from
inside the community. We simulate a content club for which new content is periodically
injected into the community. We �nd that the number of copies of fresh content injected
into the content club plays an important role in content availability. In Section 7.7 we
examine the issue of hot spots in peer communities and provide several solutions. Finally
Section 7.8 concludes the chapter and outlines future research.

7.3 Related Work

The most prominent P2P �le-sharing systems in use today include Morpheus/FastTrack [21,
48], Gnutella [28] Freenet [23] and Napster [51]. These systems provide means to locate
and download content. They provide no explicit mechanisms to manage the degree of
replication in the set of peers, or for subsets of peer communities (such as a university
campus). The notion of content clubs is present in P2P research and development. For ex-
ample, MojoNation provides incentives to users who provide disk, bandwidth and content
resources to the P2P community; Napster now requires its users to pay a membership fee
to get access to copyrighted content managed by Napster.

In the research community, there are several ongoing e�orts for scalable lookup services.
Each of these services can be viewed as a substrate on top of which P2P applications can
be built. The substrate provides applications with an API which accepts the name of
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a content object and returns an up peer that is responsible for that object. Chord [83]
uses consisting hashing [37], but relaxes the requirement that all up peers know about all
other up peers. A related service is Pastry [75], which forwards messages based on address
pre�xes rather than on numerical di�erences with the destination address. See also [63]
and [95]. Our work di�ers from [63,75,83,95] in that our focus is on optimizing availability
of content rather than on providing schemes for �nding content. Our work layers on top
of a content-location substrate.

FarSite [20] is a P2P �lesystem with the strong persistence and availability of a tradi-
tional �lesystem. The Farsite �lesystem uses the same number of replicas for each object.
The goal of a community is not to provide strong �le persistence and availability, but
instead maximal content availability. Our goal is similar to that of a video rental store:
given limited shelf space, satisfy customer demand by providing a large choice of videos
and adequate numbers of copies of popular videos. Thus, in our P2P communities, the
number of replicas of an object depends on the popularity and locations of the object.

Squirrel [32] is a decentralized P2P Web cache. It resembles what we call a �content-
cache�. However, the Squirrel project aims to build a P2P cache that has identical func-
tionality to a centralized Web proxy cache. In particular, it carefully addresses the issue
of consistency of cached Web documents. Our focus is on audio and video content, for
which consistency is not a primary issue. Furthermore, Squirrel does not address optimal
replication of content.

7.4 Optimal Replication of Content over a Community of
Peers

In this section we formulate and solve the optimal P2P replication problem. The formula-
tion is somewhat academic as it assumes that the objects and their popularities are known
a priori. It also assumes that the up probabilities of the peers are known, and the peer-up
events are independent. Nevertheless, this formulation and solution provide signi�cant
insight into the design of adaptive algorithms for P2P communities (Sections 3 and 4).

Consider a community of I peers. A peer might be a powerful workstation, a personal
computer, or an Internet-connected PDA. At any given time, a given peer may be up or
down; it may be down because the device is physically disconnected from the communica-
tion network or because the peer community application is not launched. For a given peer
i, let pi denote its up probability, that is, the fraction of time that the peer is up. Each
peer has private storage and shared storage. Only content in the shared storage can be
accessed by the community at large. Denote by Si the amount of shared storage (in bytes)
that the ith peer is prepared to contribute to the community. We suppose that the content
in a peer's shared storage is not lost when a peer goes down; when the peer comes back
up, all of the content in its shared storage is again available for sharing. (This is generally
the case in P2P �le-sharing systems such as Napster, Gnutella and Morpheus.)

Let J denote the number of content objects that the community will share. Let bj
denote the size (in bytes) of the jth content object. In this formulation, we assume that
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the request probabilities for the J objects are known a priori. Speci�cally, we suppose that
the request probability for each object j is a known value, qj, with q1 + q2 + � � �+ qJ = 1.
In this section we de�ne a �hit� to be a request for an object for which a copy of the object
is present in one of the up peers in the community. The �hit probability� is the fraction of
requests that are hits.

One of the key characteristics of a peer community is that - in order to have a high
hit probability within the community - popular objects need to be replicated across peers,
with the degree of replication being a function of the object's popularity. Let us denote by
nj the number of replicas of object j; we require each replica to be placed on a di�erent
peer. Our goal in this section is to determine n1; : : : ; nJ so that the hit probability is
maximized.

Whenever a peer i wants the content object j, it �rst searches the community of up
peers for a replica of the object. Once �nding an up peer i0 with the object, peer i will
request a direct P2P transfer from peer i0. Peer i may simply stream in and render the
object without placing it in its local storage; or it may download the object into the private
portion of its local storage. However, in our design, peer i does not put the object in its

shared storage as it is not responsible for sharing the object.

Having de�ned the optimal replication problem, we now formulate it as an integer
programming problem. To this end, let xij be a zero-one variable which is equal to one if
peer i contains a replica of object j and is zero otherwise. The probability that a given
request will have a hit within the community of up peers is

P (hit) =

JX
j=1

qj(1�

IY
i=1

p
xij
i ) (7.1)

Any assignment of replicas to peers must satisfy the local storage constraints:

JX
j=1

bjxij � Si; i = 1; : : : ; I (7.2)

The integer programming problem is then to �nd the 0-1 variables xij such that (1) is
maximized subject to (2). This problem can be shown to be NP-complete by reducing it
to the Zero-One Integer Programming problem [26].

The solution to the integer programming problem provides an upper bound on the
achievable performance of any distributed, adaptive algorithm (see Sections 3 and 4).
Integer programming heuristics for solving this general problem will be explored as part of
our future research. For the purposes of this chapter, we solve a special case of this problem,
namely, when each node is up with the same probability pi = p. (Our algorithms in the
subsequent sections do not require this; but the assumption is useful for benchmarking
purposes.) Speci�cally, consider the problem of maximizing
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P 0(hit) =
JX
j=1

qj(1� p)nj (7.3)

subject to

JX
j=1

bjnj � S (7.4)

where S = S1 + � � � + SI . Note that, because storage has been aggregated into one
constraint, the optimal value for P 0(hit) is actually an upper bound on the optimal hit
probability (for homogeneous values of pi); however, in our numerical work, this upper
bound turns out to be very tight. This optimization can be solved e�ciently by dynamic
programming. Indeed, let fj(s) be the minimum miss probability when there are s bytes of
aggregate storage and objects j; : : : ; J to replicate. Then standard dynamic programming
arguments give

fj(s) = min
n:bjn�s

[fj+1(s� nbj) + qja
n]

The optimal replica pro�le n1; : : : ; nJ solves f1(S). As we show in the following section,
this optimal replica pro�le provides insight into how objects should be replicated and it
benchmarks the hit probabilities of the adaptive algorithms.

7.5 Adaptive Replication for Content Caches

The main contribution of this chapter is a suite of adaptive, distributed schemes for repli-
cating content on-the-�y in a community of peers. In this section, our focus is on content-
cache communities, that is, communities for which requests can be satis�ed on-demand
from outside the community when the desired object is unavailable from inside the com-
munity.

We suppose that each object can be identi�ed by a name. There are a number of
current projects and research e�orts in the direction of assigning names to objects [8, 44]
. For example, each object can be identi�ed by a URL or have a unique URN. We also
suppose that each peer has a persistent name, which is assigned when the peer initially
subscribes to the application.

Our algorithms assume the existence of a substrate with the following functionality. The
substrate has a function call that takes as input an object name j and creates internally
an ordered list of all the peers (both the up and down peers). Let i1; i2; : : : be the list of
peers for o. Let Y1 be the �rst up peer on this list, Y2 be the second up peer on the list,
etc. We refer to Y1 as the �rst-place winner for j among the current set of up peers; more
generally, we refer to Yk as the kth place winner. The function call returns Y1; Y2; : : : ; YK
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for any desired value of K. The peer Y1 is also referred to as the �home� of j, i.e., it is the
best place for j among the current set of up peers. There are number of substrates today
that provide homes, including Chord [83], Pastry [75] and CAN [63]. These substrates are
di�erent in their overlay topology, message passing complexity, and message processing
complexity, but they all scale and are fully distributed. These substrates can be extended
to provide kth-place winners. Thus, any of these existing substrates can be used by our
replication algorithms.

A simple example of such a substrate is what we call two-argument hashing. This
substrate, inspired from CARP [90] uses a hash function that is a function of both (i) the
object names, and (ii) the peer names. Speci�cally, let h(i; j) be a hash function that maps
the object name j and the peer name i into the hash space [0; 1]. For example, g(�) could be
a hash function that maps arbitrary ASCII strings into [0; 1], and h(i; j) could be h(i; j) =
g(i+ j), where i+ j is the concatenation of i and j (assuming that both object names and
peer names are ASCII strings). We require that the mapping be uniformly distributed over
[0; 1] and that collisions are rare. With two-argument hashing, the substrate applies the
function h(i; j) to each up peer, and the K up peers with the highest values become
the top-K winners, Y1; : : : ; YK . One of the nice features of two-argument hashing is
that it uniformly distributes objects to the various homes. Our replication algorithms
do not require the two-argument hashing substrate; we present it here to serve as a simple
illustrative example of how the top-K winners may be calculated. The substrates in [83]
and [75] use single-argument hashing; they hash both the object name j and the peer name
i separately to determine the home peer.

We can now present our �rst adaptive algorithm for replication. Suppose X is a peer
that wants object j. X will get access to j as follows:
Adaptive Top-K Algorithm

1. X uses the substrate to determine Y1, the current �rst-place winner for j.

2. X asks Y1 for j.

� If Y1 doesn't have j, Y1 determines Y2; : : : ; YK and pings each of the K � 1

peers to see if any of them have j.

� If any of Y2; Y3; : : : ; YK have j, Y1 retrieves j from one of them and puts a copy
in its shared storage. If none of them have j (a �miss� event), Y1 retrieves j
from outside the community and puts a copy in its shared storage.

� If Y1 needs to evict an object to make room for j in its shared storage, Y1 uses
the LRU (least recently used) replacement policy.

3. Y1 makes j available to X (either for streaming or for downloading into X's private
storage). Note that X does not put j in its shared storage unless X = Y1.

The idea behind the algorithm is as follows. Each object j has attractor nodes, namely,
the leading (up and down) nodes i1; i2; : : : determined by the underlying substrate. The
object j tends to get replicated in its attractor nodes, which go up and down over time.
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Queries for objects also tend to get sent to attractor nodes. Thus, a query for a particular
object j tends to get directed to up nodes that likely have the object. Popular objects
get replicated on-the-�y when none of the top-K peers have the requested object-the-�y
when none of the top-K peers have the requested object.. For the case K = 1, only the
�rst-place peer is checked for the object before going to the outside. By making K > 1,
the community checks a larger number of candidates before resorting to the outside.

We see that the Adaptive Top-K Algorithm possesses many desirable properties. It
replicates content on-the-�y without any a priori knowledge of object request patterns. It
is fully distributed. It is possible that there will be a miss even when the desired object
is in some up peer in the community; however, we shall show that if K is appropriately
chosen, the probability of such a miss is low.

There are three key components to the Top-K algorithm:

1. Management of private and shared storage. A peer does not store a copy of
an object in its shared storage unless it has obtained it on the behalf of another peer.

2. Replacement policy. When a peer introduces a copy of an object in its shared
storage, it may have to evict one or more other objects.

3. On-demand replication and search. If the current �rst-place winner does not
have the requested object, it acquires and replicates the object. Note that other
replicas of the same object may be present in some kth-place winner or in some
down peer.

To study the hit probability performance, we have performed simulation experiments
with 100 peers and 10,000 objects. Object sizes are randomly distributed with sizes uni-
formly distributed between b and 2b for a �xed value of b. For each experiment, we have
assumed that each peer contributes the same amount of shared storage to the community;
our experiments run from 5 objects per peer on average to 30 objects per peer on average.
For simplicity, in each experiment all the peers have the same up probability. We have
considered three up probabilities: :2, :5 and :9. We suppose that the request probabilities
for the various objects follow the Zipf distribution; our experiments use Zipf parameters :8
and 1:2 [82]. For the underlying substrate, for convenience we have used the two-argument
hash function. (The underlying substrate can have an impact on performance, as they do
not distribute objects to homes in the same uniform manner.)

Figures 7.2 and 7.3 show six graphs corresponding to the six di�erent combinations of
up probabilities and Zipf parameters. Each graph plots hit probabilities as a function of
peer storage. The top curve in each of these �gures is the theoretical optimal, as described
in Section 2. Each �gure has a curve for K = 1, K = 2 and K = 5. (In all of our
experiments, no signi�cant improvement was obtained by increasing K beyond 5.) The
bottom curve is the hit probability for the case when each of the peers independently
retrieves and stores content, without regard to the other peers in the community; we refer
to this as the �sel�sh algorithm�. We make the following observations:

� As we would intuitively expect, the hit probability increases if we increase the peer
storage capacity, the peer up probability, or the Zipf parameter.
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Figure 7.2: Hit-rate as function of node storage capacity for Zipf parameter .8

� The adaptive algorithm with K = 1 performs signi�cantly better than the sel�sh
algorithm, but signi�cantly worse than the theoretical optimal.

� Using a K value greater than 1 improves the hit probability, especially when peers
are frequently down. K = 2 provides an important improvement; further increasing
K only gives a marginal improvement. Figure 7.4 shows the fraction of misses for
which the object was indeed available in some up peer for Zipf =.8.

Examining how objects are replicated provides important insight. Figures 7.5 and 7.6
show, as a function of object popularity, the number of replicas per object for the theo-
retical optimal and for the adaptive algorithm with K = 1. For the adaptive algorithm,
the number of replicas per object is changing over time; the graphs report the average
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Figure 7.3: Hit-rate as function of node storage capacity for Zipf parameter 1.2
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Figure 7.4: Fraction of misses for Zipf = .8

values. Again, the �gure presents six graphs, one for each pair of up probability and Zipf
parameter. The di�erence in how the theoretical optimal and the adaptive algorithm repli-
cate objects is striking. The optimal algorithm replicates the more popular objects much
more aggressively than does the adaptive algorithm; and it doesn't store the less popular
objects, whereas the adaptive algorithm provides temporary caching to the less popular
objects.

7.5.1 Distributed LFU Replacement

The reason why the adaptive algorithm provides temporary caching to the less popular
objects is that whenever one of these objects is requested, it gets cached in the community
of peers and lingers in the community until it is evicted with the LRU replacement policy.
Intuitively, if we stop caching the less popular objects, the popular objects will grab the
vacated space and there will be more replicas of the popular objects.

To this end, we introduce the distributed least-frequently-used (LFU) replacement policy.
Here each peer, for example Y , keeps track of all the requests that have been made to it.
Speci�cally, for every object for which Y has seen a request as a �rst-place winner, it keeps
a count of the number of requests for that object. (In practice, the request counts would
be dampened with a weighted exponential moving average. LFU would also stop tracking
objects that have very small count values.) It keeps this request count for all objects it
has seen requests for, not just for the objects currently stored in its shared storage.

Now suppose that X asks Y1 for the object j. As in the Adaptive Top-K Algorithm,
if Y1 doesn't have j, it obtains j (either from outside the community or from one of the
other K winners) on the behalf of X. Y1 delivers j to X, but will only put j in its shared
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Figure 7.5: Number of replicas per object with 10 objects of per-node storage capacity and
LRU replacement policy for Zipf parameter .8
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Figure 7.6: Number of replicas per object with 10 objects of per-node storage capacity and
LRU replacement policy for Zipf parameter 1.2
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storage if its local request count is greater than the smallest request count of all the other
objects currently cached in Y1. In this manner, Y1 does not cache rarely requested objects.

The hit probabilities for distributed LFU with K = 1 is also shown in Figures 7.2
and 7.3. We see that the addition of distributed LFU greatly improves the hit probabilities,
bringing them in all cases close to the theoretical optimal. Our numerical results (not
reported) also showed that K > 1 did not improve performance when distributed LFU
is used. Figures 7.7 and 7.8 show that the the average number of replicas per object is
very close to those in the theoretical optimal. Thus distributed LFU greatly improves
performance and simpli�es network messaging since K = 1 is su�cient. On the other
hand, it requires that each peer locally track object request counts, even for objects that
are not currently in its local storage.
Approximate Performance Analysis

We now provide an analytical approximation of the hit probability for the Top-K
Algorithm with distributed LFU. This analytical technique not only provides an accurate
approximation of the hit probability but also sheds considerable insight on the mechanics
of the algorithm. To this end, let � be the rate at which the peer community requests
objects, and let �j = �qj be the request rate for object j. Let ik(j) be the kth-place
winner for object-j among all the up and down (all I) peers.

Let j(i) denote the approximate rate at which requests for object j arrive at peer i
when peer i is up. To calculate j(i), denote by k the �place� of object j at node i, that
is, for �xed i and j, k is such that ik(j) = i. If k = 1, then j = �j; if k = 2, then
j(i) = �j(1� pi1(j)); more generally,

j(i) = �j(1� pi1(j))(1� pi2(j)) � � � (1� pik�1(j))

For LFU, the objects for which there are the most requests to peer i are stored in peer
i. Re-order the objects so that j(i), j = 1; : : : ; J , goes from highest to lowest; let Ji be
the largest J 0 such that

J 0X
j=1

bj � Si:

Also, let Oi be the set of �rst Ji objects in the re-ordered list of objects. The set Oi is
the approximate set of objects that are stored in peer i. The hit probability for a request
for object j is approximately the probability that at least one peer i with j 2 Oi is up.
Thus

P (hit) =
JX
j=1

qj[1�
Y

i:j2Oi

(1� pi)]
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Figure 7.7: Number of replicas per object with 10 objects of per-node storage capacity and
LFU replacement policy for Zipf parameter .8
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Figure 7.8: Number of replicas per object with 10 objects of per-node storage capacity and
LFU replacement policy for Zipf parameter 1.2
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Figure 7.9: Sensitivity of hit probabilities to request rate

7.5.2 Timescales

There are two important timescales in peer communities. At the slower timescale, peers in
the community are going up and down (for example, connecting and disconnecting their
personal computers). At the faster time scale, up peers are requesting objects. In our
numerical work, we set the rate at which each peer goes down to 1, and the per-peer
request rate to 20. (Thus, on average, each peer makes 20 requests before going down.)
The up rates were set to .2, 1 and 9 to obtain the three di�erent up probabilities. Figure 7.9
explores the sensitivity of the hit probabilities of di�erent algorithms for a wider range of
request rates, namely, request rates of 2, 20, 200, and 2000. We see from Figure 7.9 that
hit rates are largely insensitive to the request rates.

7.6 Adaptive Replication for Content Clubs

In this section we consider adaptively replicating objects in content clubs. The key di�er-
ence between a content club and a content cache is that in a content club all content is
only available from members of the club. If a request cannot be satis�ed from one of the
club members, the object cannot be delivered. This scenario is similar to a video rental
store, where the store has a certain number of copies for a given video and if all copies are
rented, then a new customer cannot get that video.

The club makes new content available by injecting multiple copies into the community of
peers. When new content is introduced, some peers may have to remove existing unpopular
objects from their storage to make room for the new content.

Our replication scheme for content clubs is as follows. When we insert a new object,
we create L copies of it, by inserting it in the peers Y1; : : : YL, i.e., the top L winners



7.6. ADAPTIVE REPLICATION FOR CONTENT CLUBS 137

among the current up peers. Note that Y1; : : : YL may not be the true top L winners
among all peers because some of the true winners may be down. Each peer also runs the
LRU replacement algorithm on its storage and new objects evict older objects. When a
peer wants to request an object, it uses the Adaptive Top-K Algorithm from Section 7.5.
However, if the �rst-place winner Y1 is unable to �nd the object from the top-K winners,
the request cannot be satis�ed and we incur a miss.

We simulate our replication scheme as follows. The club starts initially with a set of
J objects which are replicated on the peers according to the algorithm above. We call
the current set of J objects as the active set of objects. Periodically we replace 10% of
the objects in the active set with new objects. We remove from the request distribution
the most unpopular objects and insert the new objects and randomly determine their
popularity rank. The request probabilities are recalculated after the objects have been
introduced to make them correspond to the Zipf-distribution. Peers can request only
objects in the active set, although previously active objects may linger on in the peer
storage. Each peer runs the LRU replacement algorithm and objects that have been
removed from the active set will eventually get removed from all the peers in the community.

In Figures 7.10 and 7.11 we show the hit-rates for a community of 100 peers, Zipf
parameter .8, and two values of L, 5 and 10. Results for Zipf parameter 1.2 were similar
and are not shown. We can see that the performance depends quite signi�cantly on the
value of L. For small peer sizes, a large value of L decreases performance. This is because
every time a new object is introduced, we create L copies of it in the community. If the
peers have only a small amount of storage, inserting a large number of copies of an object
can force out of the community copies of more popular objects, thereby reducing the overall
hit probability. If the peers have more storage, then the evicted objects tend to be less
popular.

Figures 7.12 and 7.13 show the hit-rate as a function of L and K for 2 di�erent node
storage capacities for Zipf parameter .8 and node up probability .5. We make the following
observations:

� There is a dramatic improvement in the hit probability when increasing K from 1

to 2. Indeed, if K = 1, only the peers that originally acquired a particular object
(during original object insertion) ever hold the object. If a �rst-place winner comes
up after insertion, it will receive queries for the object but never obtain it. Further
increases inK have only marginal improvement unless up probabilities are very small.

� There is some value of L which yields the best performance in the given situation.
This value depends on the overall storage capacity and peer up probabilities. The
smaller the storage capacity, the smaller the optimal value of L because we need to
be more careful how to use the limited storage capacities.

We have assumed in the simulation that L copies of each new object are inserted into
the community. For many applications in practice, there will be some a priori knowledge
of the relative popularity of new objects; this knowledge can be used to set L to di�erent
values for di�erent new objects.
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Figure 7.10: Hit-rate as function of node storage capacity for Zipf = .8 and L = 5
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Figure 7.11: Hit-rate as function of node storage capacity for Zipf = .8 and L = 10
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Figure 7.12: Hit-rate as function of L and K for Zipf = .8 and 30 objects of per-node
storage

For content clubs we use LRU replacement rather than distributed LFU. Indeed, LFU is
not as natural in content clubs, since when a a new object is introduced to the community,
its request count is zero, and is therefore not stored anywhere. We have experimented with
a number of variations of distributed LFU for content clubs and have seen no signi�cant
improvement.

7.7 Dealing with Hot Spots

The replication theory and algorithms in the previous sections maximize the availability
of requested objects. However, they do not directly address the issue of hot spots. For
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Figure 7.13: Hit-rate as function of L and K for Zipf = .8 and 160 objects of per-node
storage
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example, suppose that j is among the most popular objects, and that Y1, the �rst-place
winner for j, is always up. Then the algorithms of the previous sections will create exactly
one replica for o and store it in Y1. If the request rate for j is very high, then Y1 will
become overloaded.
Optimization Theory

In this section we modify the theory and algorithms of the previous sections to better
respond to hot spots. First consider the optimization theory of Section 7.4. Suppose now
that each peer i announces a value �i, which is the maximum average rate at which it is
willing to serve content to the rest of the community. Also let � be the aggregate request
rate for objects.

Suppose a copy of object j is in peer i. Let us calculate the transmission rate of peer
i due to object j. We suppose that the aggregate transmission rate (across all peers) for
object j is equally shared among all the up peers that have a copy of j. The average
number of up peers with a copy of j is

P
k pkxkj. Thus the transmission rate for peer i

due to type-j objects is

�qjbj
1PI

k=1 pkxkj
:

Summing up over all objects j gives the following constraint:

JX
j=1

�qjbj
xijPI

k=1 pkxkj
� �i (7.5)

Therefore, the integer programming formulation of the optimal replication problem with
explicit load balancing is to maximize (7.1) subject to (7.2) and (7.5). We will address this
problem in our future research.

Now consider the case when all the pi's are equal. A natural constraint is that the
average transmission load due to any object j placed on any peer be less than some �xed
value, say, �0, that is,

�qjbj
pnj

� �0

or equivalently

nj � �qjbj (7.6)

where � = �0�=p. This constraint can easily be included in the dynamic programming
formulation. (However, we recommend rounding the right-hand side, thereby allowing for
zero copies of less popular objects.)
Adaptive Algorithms

To deal with hot spots, we should abide to the following two principles:
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� Replicate: When the peers holding a hot object are overloaded, the peers should
push the object to the �next-place winners�. For example, if the �rst- and second-
place winners are overloaded with requests for object o, they should push a copy of
o to third (and possibly fourth, �fth, etc.) place winners.

� Spread Requests: When a peer X wants an object o, it should ping the top-K
winners. If more than one of the K peers has o, it should choose one at random and
request the object from that peer. In the case of content caches, if no peer has o,
X should request o from the �rst-place winner Y1 (which will request o from outside
the community on the behalf of X.

We propose the following algorithm for replication. When a peer Y sees that it is
overloaded with transmissions for an object o, it determines the the current top-R winners
and asks these winners if they have o. Let i1; i2; : : : ; ir be the peers that indicate that they
do not have o, ordered by their winner placement for object o. Y will then push o into
i1; : : : ; is (s � r), with the value of s depending on the extent of overload and the number
of top-K peers that currently have o.
Chopping Objects into Small Pieces

Given the focus of this chapter is on large multimedia objects, another approach to
load balancing is to chop up each object into small pieces, and give each piece a unique
name. This will cause each new object introduced into the community to be scattered
among the peers of the community. When a peer accesses an object, the transmission load
will be shared by a large number of peers.

One drawback of this approach is that if only one piece is unavailable from the peer
community, then there will be miss. Such a miss event is particularly unfortunate for a
content club, since the missing piece cannot be retrieved from the outside. Therefore, it
is useful to introduce redundant pieces so that, say, any n of n +m pieces are needed to
reconstruct the object. This will be the subject of future research.

7.8 Conclusion

In this chapter we have studied content replication in peer-to-peer communities. We dis-
tinguish between two types of coordinated peer communities: content caches, for which
content can be retrieved from outside the community if unavailable from within the com-
munity; and peer clubs, for which all content must be retrieved from inside the community.
We have formulated an integer programming problem that provides us with the exact opti-
mal solution for both peer caches and content clubs. We have developed several adaptive,
distributed algorithms for replicating content on-the-�y. Through extensive experiments,
we have found that our algorithms combined with a distributed least-frequently-used re-
placement policy provide near-optimal performance, both in terms of hit-rate and number
of replicas.

The research in this chapter provides for many opportunities for future research. We
plan to explore integer programming heuristics to better estimate the optimal solution
in equation (7.1) and also study the load-balanced version of the original problem. We
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will also study if chopping the large objects into small pieces can help in improving the
performance.



Chapter 8

Distribution of Layered Encoded

Video

8.1 Overview

The e�cient distribution of stored information has become a major concern in the Internet
which has increasingly become a vehicle for the transport of stored video. Because of the
highly heterogeneous access to the Internet, researchers and engineers have argued for
layered encoded video. In this chapter we investigate delivering layered encoded video
using caches. Based on a stochastic knapsack model we develop a model for the layered
video caching problem. We propose heuristics to determine which videos and which layers
in the videos should be cached. We evaluate the performance of our heuristics through
extensive numerical experiments. We also consider two intuitive extensions to the initial
problem.

8.2 Introduction

In recent years, the e�cient distribution of stored information has become a major con-
cern in the Internet. In the late 1990s numerous companies � including Cisco, Microsoft,
Netscape, Inktomi, and Network Appliance � began to sell Web caching products, enabling
ISPs to deliver Web documents faster and to reduce the amount of tra�c sent to and from
other ISPs. More recently the Internet has witnessed the emergence of content distribu-
tion network companies, such as Akamai and Sandpiper, which work directly with content
providers to cache and replicate the providers' content close to the end users. In parallel to
all of this caching and content distribution activity, the Internet has increasingly become a
vehicle for the transport of stored video. Many of the Web caching and content distribution
companies have recently announced new products for the e�cient distribution of stored
video.

Access to the Internet is, of course, highly heterogeneous, and includes 28K modem
connections, 64K ISDN connections, shared-bandwidth cable modem connections, xDSL
connections with downstream rates in 100K-6M range, and high-speed switched Ethernet
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connections at 10 Mbps. Researchers and engineers have therefore argued that layered
encoded video is appropriate for the Internet. When a video is layered encoded, the number
of layers that are sent to the end user is a function of the user's downstream bandwidth.

An important research issue is how to e�ciently distribute stored layered video from
servers (including Web servers) to end users. As with Web content, it clearly makes sense
to insert intermediate caches between the servers and clients. This will allow users to access
much of the stored video content from nearby servers, rather than accessing the video from
a potentially distant server. Given the presence of a caching and/or content distribution
network infrastructure, and of layered video in origin servers, a fundamental problem is to
determine which videos and which layers in the videos should be cached. Intuitively, we
will want to cache the more popular videos, and will want to give preference to the lower
base layers rather than to the higher enhancement layers.

In this chapter we present a methodology for selecting which videos and which layers
should be stored at a �nite-capacity cache. The methodology could be used, for example,
by a cable or ADSL access company with a cache at the root of the distribution tree.
Speci�cally, we suppose that the users have high-speed access to the cache, but the cache
has limited storage capacity and a limited bandwidth connection to the Internet at large.
For example, the ISP might have a terabyte cache with a 45 Mbps connection to its parent
ISP. Thus, the video caching problem has two constrained resources, the cache size and the
transmission rate of the access link between the ISP and its parent ISP. Our methodology
is based on a stochastic knapsack model of the 2-resource problem. We suppose that the
cache operator has a good estimate of the popularities of the the video layers. The problem,
in essence, is to determine which videos and which layers within the video should be cached
so that customer demand can best be met.

This chapter is organized as follows. In Section 8.3 we present our layered video stream-
ing model. In Section 8.4 we present our utility heuristics and evaluate their performance.
Section 8.5 extends our caching model by adding the possibility to negotiate the delivered
stream quality. Section 8.6 considers a queueing scheme for managing client requests. Sec-
tion 8.7 considers the usefulness of partial caching. Section 8.8 presents an overview of
related work and Section 8.9 concludes the chapter.

8.3 Model of Layered Video Streaming with Proxy

Figure 8.1 illustrates our architecture for continuous media streaming with proxy servers.
We �rst give a rough overview of our streaming architecture and then discuss each com-
ponent in detail. All available continuous media objects are stored on the origin servers.
Popular streams are cached in proxy servers. The clients direct their streaming requests to
the appropriate proxy server. If the requested stream is cached in the proxy, it is directly
streamed over the local access network to the client. If the requested stream is not cached
in the proxy, it is streamed from the origin server over the wide area network to the proxy.
The proxy forwards the stream to the client.



8.3. MODEL OF LAYERED VIDEO STREAMING WITH PROXY 147

Figure 8.1: Architecture for caching and streaming of layered encoded video.

8.3.1 Layered Video

The continuous media objects available on the origin servers are prerecorded audio and
video objects, such as CD�quality music clips, short video clips (e.g., news clips, trailers or
music videos) or full�length movies or on�line lectures. Our focus in this study is on video
objects that have been encoded using layered (hierarchical) encoding techniques [40,42,86].
With hierarchical encoding each video object is encoded into a base layer and one or more
enhancement layers. The base layer contains the most essential basic quality information.
The enhancement layers provide quality enhancements. A particular enhancement layer
can only be decoded if all lower quality layers are available. Therefore, an enhancement
layer is useless for the client if the corresponding lower quality layers are not available.

Layered video allows service providers to o�er �exible streaming services to clients with
vastly di�erent reception bandwidths and decoding capabilities. Typically, wireless clients
and clients with modem�speed wireline Internet access will request only the base layer
stream. Clients with high�speed ADSL or cable modem access, on the other hand, may
wish to receive higher quality streams consisting of base layer as well enhancement layers.
Furthermore, layered video allows for �exible pricing structures. A service provider may
o�er the base layer stream at a basic rate and charge a premium for the enhancement
layers. In other words, clients are charged more when receiving more layers (i.e., higher
quality streams). Such a pricing structure might prompt clients to request the cheaper base
layer�only stream of a news clip or talk show, say, while requesting the more expensive
high quality stream of an entertainment movie.

To make the notion of layered video objects more precise, suppose that there are M
video objects. We assume that the video objects are encoded into Constant Bit Rate (CBR)
layers, which is a reasonable �rst approximation of the output of hierarchical codecs. For
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notational simplicity we assume that all video objects are encoded into L layers. (Our
model extends to video objects that di�er in the number of layers in a straightforward
manner.) Let rl(m) denote the rate (in bit/sec) of layer l; l = 1; : : : ; L, of video object
m; m = 1; : : : ;M . We de�ne a j�quality stream as a stream consisting of layers 1; 2; : : : ; j.
Let T (m); m = 1; : : : ;M , denote the length (in seconds) of video object m. Let R(j;m)

denote the revenue accrued from providing a j�quality stream of object m.

8.3.2 Proxy Server

The proxy server is located close to the clients. It is connected to the origin servers via a
wide area network (e.g., the Internet). We model the bandwidth available for streaming
continuous media from the origin servers to the proxy server as a bottleneck link of �xed
capacity C (bit/sec). The proxy is connected to the clients via a local access network. The
local access network could be a LAN running over Ethernet, or a residential access network
using xDSL or HFC technologies. For the purpose of this study we assume that there is
abundant bandwidth for continuous media streaming from the proxy to the clients. We
model the proxy server as having a storage capacity of G (bytes). We assume that the
proxy storage has in�nite storage bandwidth (for reading from storage). We note that the
proxy storage is typically a disk array with limited storage bandwidth due to the limited
disk bandwidths and seek and rotational overheads. Our focus in this study, however, is on
gaining a fundamental understanding of the impact of the two basic streaming resources
(bottleneck bandwidth C and cache space G) on the proxy performance. We refer the
interested reader to [9,27,64] for a detailed discussion of the disk array limitations as well
as discussions on replication and striping techniques to mitigate these limitations.

We consider a caching scenario where the cache contents are updated periodically, say
every few hours, daily, or weekly. The periodic cache updates are based on estimates of
the request pattern of the proxy's client community. A service provider may estimate the
request pattern from observations over the last couple of days or weeks. Suppose that the
requests for video streams arrive according to a Poisson process with rate � (requests/sec).
Let p(j;m) denote the popularity of the j�quality stream of objectm, that is, p(j;m) is the
probability that a request is for the j�quality stream of object m. These popularities could
be estimated from the observed requests using an exponential weighted moving average.
As a proper probability mass distribution the p(j;m)'s satisfy

PM
m=1

PL
j=1 p(j;m) = 1.

Also, note that the arrival rate of requests for the j�quality stream of object m is given by
�p(j;m).

Our focus in this study is on caching strategies that cache complete layers of video
objects in the proxy. Our goal is to cache object layers so as to maximize the revenue
accrued from the streaming service. When updating the cache our heuristics give layers of
very popular objects priority over layers of moderately popular objects. Moreover, lower
quality layers are given priority over higher quality layers (as these require the lower quality
layers for decoding at the clients).

To keep track of the cached object layers we introduce a vector of cache indicators
c = (c1; c2; : : : ; cM ), with 0 � cm � L for m = 1; : : : ;M . The indicator cm is set to i if
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layers 1 through i of object m are cached. Note that cm = 0 indicates that no layer of
object m is cached. With the cache indicator notation the cache space occupied by the
cached object layers is given by

S(c) =
MX
m=1

cmX
l=1

rl(m)T (m): (8.1)

8.3.3 Stream Delivery

The client directs its request for a j�quality stream of a video object m to its proxy server
(for instance by using the Real Time Streaming Protocol (RTSP) [77]). If all the requested
layers are cached in the proxy (cm � j), the requested layers are streamed from the proxy
over the local access network to the client. If layers are missing in the proxy (cm < j),
the appropriate origin server attempts to establish a connection for the streaming of the
missing layers cm + 1; : : : ; j at rate

Pj
l=cm+1 rl(m) over the bottleneck link to the client.

If there is su�cient bandwidth available, the connection is established and the stream
occupies the link bandwidth

Pj
l=cm+1 rl(m) over the lifetime of the stream. (The layers

1; : : : ; cm are streamed from the proxy directly to the client.) We assume that the client
watches the entire stream without interruptions, thus the bandwidth

Pj
l=cm+1 rl(m) is

occupied for T (m) seconds. In the case there is not su�cient bandwidth available on the
bottleneck link, we consider the request as blocked. (In Section 8.5 we study a re�ned
model where clients may settle for a lower quality stream in case their original request is
blocked.)

Formally, let Bc(j;m) denote the blocking probability of the request for a j�quality
stream of object m, given the cache con�guration c. Clearly, there is no blocking when
all requested layers are cached, that is, Bc(j;m) = 0 for cm � j. If the request requires
the streaming of layers over the bottleneck link (cm < j), blocking occurs with a non�zero
probability Bc(j;m). We calculate the blocking probabilities Bc(j;m) using results from
the analysis of multiservice loss models [72].

In this appendix we give an overview of the calculation of the blocking probabilities
Bc(j;m), which are non�zero for cm < j. We calculate the blocking probabilities using
results from the analysis of multiservice loss models. We refer the interested reader to [72]
for a detailed discussion of this analysis. We model the bottleneck link for continuous
media streaming from the origin servers to the proxy server as a stochastic knapsack of
capacity C. We model requests for j�quality streams of object m as a distinct class of
requests. Let bc = (bc(j;m)); m = 1; : : : ;M; j = 1; : : : ; L, be the vector of the sizes
of the requests. Note that this vector has ML elements. Recall that a request for a j�
quality stream of objectm of which the cm�quality stream is cached requires the bandwidthPj

l=cm+1 rl(m) on the bottleneck link; hence bc(j;m) =
Pj

l=cm+1 rl(m) for cm < j and
bc(j;m) = 0 for cm � j. Without loss of generality we assume that C and all bc(j;m)'s
are positive integers. Let n = (n(j;m)); m = 1; : : : ;M; j = 1; : : : ; L, be the vector of
the numbers of bc(j;m)�sized objects in the knapsack. The n(j;m)'s are non�negative
integers. Let Sc = fn : bc � n � Cg be the state space of the stochastic knapsack, where
bc � n =

PM
m=1

PL
j=1 bc(j;m)n(j;m). Furthermore, let Sc(j;m) be the subset of states
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in which the knapsack (i.e., the bottleneck link) admits an object of size bc(j;m) (i.e., a
stream of rate

Pj
l=cm+1 rl(m)). We have Sc(j;m) = fn 2 Sc : bc �n � C � bc(j;m)g The

blocking probabilities can be explicitly expressed as

Bc(j;m) = 1�

P
n2Sc(j;m)

QM
m=1

QL
j=1(�(j;m))n(j;m)=(n(j;m))!P

n2Sc
QM

m=1

QL
j=1(�(j;m))n(j;m)=(n(j;m))!

; (8.2)

where �(j;m) = �p(j;m)T (m). Note that �(j;m) is the load o�ered by requests for
j�quality streams of object m. The blocking probabilities can be e�ciently calculated
using the recursive Kaufman�Roberts algorithm [72, p. 23]. The time complexity of the
algorithm is O(CML). The complexity is linear in the bandwidth C of the bottleneck link
and the number of objects M , which can be huge. The complexity is also linear in the
number of encoding layers L, which is typically small (2 � 5).

The expected blocking probability of a client's request is given by

B(c) =
MX
m=1

LX
j=1

p(j;m)Bc(j;m):

The service provider should strive to keep the expected blocking probability acceptably
small, say, less than 5%. The throughput of requests for j�quality streams of object m,
that is, the long run rate at which these requests are granted and serviced is �p(j;m)(1�

Bc(j;m)). The long run rate of revenue accrued from the serviced j�quality streams of
object m is the revenue per served request, R(j;m), multiplied by the throughput. Thus,
the long run total rate of revenue of the streaming service is

R(c) = �
MX
m=1

LX
j=1

R(j;m)p(j;m)(1 �Bc(j;m)): (8.3)

Our goal is to cache object layers so as to maximize the total revenue rate.

8.4 Optimal Caching

In this section we study optimal caching strategies. Suppose that the stream popularities
(p(j;m)) and the stream characteristics (layer rates rl(m) and lengths T (m)) are given. The
question we address is how to best utilize the streaming resources � bottleneck bandwidth
C and cache space G � in order to maximize the revenue. Our focus in this study is on
optimal caching strategies, that is, we focus on the question: which objects and which
layers thereof should be cached in order to maximize the revenue? Formally, we study
the optimization problem maxcR(c) subject to S(c) � G. Throughout this study we
assume the complete sharing admission policy for the bottleneck link, that is, a connection
is always admitted when there is su�cient bandwidth. We note that complete sharing
is not necessarily the optimal admission policy. In fact, the optimal admission policy
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may block a request (even when there is su�cient bandwidth) to save bandwidth for more
pro�table requests arriving later. We refer the interested reader to [72, Ch. 4] for a detailed
discussion on optimal admission policies. Our focus in this study is on the impact of the
caching policy on the revenue; we assume complete sharing as a baseline admission policy
that is simple to describe and administer.

The maximization of the long run revenue rate R(c) over all possible caching strategies
(i.e., cache con�gurations c) is a di�cult stochastic optimization problem, that � to the
best of our knowledge� is analytically intractable. To illustrate the problem consider a
scenario where all video layers have the same rate r and length T , i.e., rl(m) = r and
T (m) = T for all l = 1; : : : ; L, and all m = 1; : : : ;M . In this scenario all object layers
have the size rT . Thus, we can cache up to G=(rT ) object layers (which we assume to be
an integer for simplicity). Suppose that during the observation period used to estimate
the stream popularities, the proxy has recorded requests for M distinct objects from its
client community. Thus, there are a total of ML object layers to choose from when
�lling the cache (with �hot� new releases there might even be more objects to consider).
Typically, the cache can accommodate only a small subset of the available object layers,

i.e., G=(rT ) � ML. For an exhaustive search there are

 
ML

G=(rT )

!
possibilities to �ll

the cache completely; a prohibitively large search space even for small ML.
Recall that with layered encoded video a particular enhancement layer can only be

decoded if all lower quality layers are available. Therefore, a reasonable restriction of the
search space is to consider a particular enhancement layer for caching only if all lower
quality layers of the corresponding object are cached. Even the �reasonable� search space,
however, is prohibitively large for moderate ML; with M = 50, L = 2, G=(rT ) = 20, for
instance, there are 2:929 � 1016 possibilities to �ll the cache completely.

Because the maximization problem maxcR(c) subject to S(c) � G is analytically
intractable and exhaustive searches over c are prohibitive for realistic problems, we propose
heuristics for �nding the optimal cache composition c.

8.4.1 Utility Heuristics

The basic idea of our utility heuristics is to assign each of the ML object layers a cache
utility ul;m; l = 1; : : : ; L; m = 1; : : : ;M . The object layers are then cached in decreasing
order of utility, that is, �rst we cache the object layer with the highest utility, then the
object layer with the next highest utility, and so on. If at some point (as the cache �lls up)
the object layer with the next highest utility does not �t into the remaining cache space,
we skip this object layer and try to cache the object layer with the next highest utility.
Once a layer of an object has been skipped, all other layers of this object are ignored as
we continue �packing� the cache. We propose a number of de�nitions of the utility ul;m of
an object layer; see Table 8.1 for an overview.

The popularity utility is based exclusively on the stream popularities; it is de�ned
by ul;m = p(l;m) + p(l + 1;m) + � � � + p(L;m). This de�nition is based on the decoding
constraint of layered encoded video, that is, an object layer l is required (i.e., has utility) for
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Popularity utility ul;m =
PL

j=l p(j;m)

Revenue utility ul;m =
PL

j=lR(j;m)p(j;m)

Revenue density utility ul;m =
PL

j=l
R(j;m)p(j;m)
rj(m)T (m)

Table 8.1: Utility de�nitions.

providing l�quality streams (consisting of layers 1 through l), l+1�quality streams, : : : , and
L�quality streams. Note that ul;m is the probability that a request involves the streaming
of layer l of object m. Also, note that by de�nition ul;m � ul+1;m for l = 1; : : : ; L � 1.
This, in conjunction with our packing strategy ensures that a particular enhancement layer
is cached only if all corresponding lower quality layers are cached.

8.4.2 Evaluation of Heuristics

In this section we present some numerical results from experiments to evaluate various
aspects of the heuristics algorithms. We ran two di�erent types of experiments. The bulk
of the experiments was carried out analytically, by calculating the revenue according to
equation (8.3) and calculating the blocking probabilities as described in the Appendix.
All of the results presented in this section are obtained in this fashion. We refer to these
experiments as analytical experiments.

We also implemented a cache simulator, in order to study queuing of requests and
partial caching. These results are presented in Sections 8.5, 8.6, and 8.7. We refer to these
experiments as simulation experiments.

We assume that there are 1000 di�erent movies, each encoded into two layers. The
characteristics of each movie are de�ned by the rate for each layer and its length. The rate
for each layer is drawn randomly from a uniform distribution between 0.1 and 3 Mbps,
while the length of the movie is drawn from an exponential distribution with an average
length of 1 hour.

In all of our experiments client requests arrive according to a Poisson process. The
average request arrival rate is 142 Erlangs. The client can request either a base layer
only or a complete movie. The request type and the movie requested are drawn randomly
from a Zipf distribution with a parameter of � = 1:0. The revenue for each movie layer is
uniformly distributed between 1 to 10.

The results of interest will be the revenue per hour and the blocking probabilities. To
obtain the results with 99% con�dence intervals, we run the experiments with di�erent
random seeds and we require a minimum of 10000 runs before calculating the con�dence
intervals. In each run we randomly assign the popularities of movies from the Zipf distri-
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Small Link
Utility heuristic Small Cache Large Cache

Popularity 1.6% 2.4%

Revenue 2.8% 0.4%

Revenue density 0.3% 0.3%

Large Link
Utility heuristic Small Cache Large Cache

Popularity 0.006% 0%

Revenue 0.1% 0%

Revenue density 0.1% 0%

Table 8.2: Average error of heuristics in small problems

bution, the rates and the lengths of the movie layers. The results are calculated as the
average value of the revenue per hour from all the runs until the con�dence intervals are
reached.

We �rst tested the performance of our heuristics in small problems in order to be
able to compare the heuristic against the �reasonable� exhaustive search. For the small
problems we set M = 10 with each movie having two layers. We varied the link bandwidth
C between 3 and 15 Mbit/s and the cache capacity between 3 and 7 Gbytes. The cache
could therefore store on the average between 3.5 and 7.6 layers out of the total 20 layers,
or between 23.1 and 41.7% of the total movie data.

The results of the small problems are shown in Table 8.2. In Table 8.2 we show
the average error obtained with each heuristic compared to the �reasonable� exhaustive
search for four di�erent cache con�gurations. The Small Link and Large Link refer to link
capacities of 3 Mbit/s and 15 Mbit/s, respectively, and Small Cache and Large Cache refer
to 3 Gbyte and 7 Gbyte caches, respectively.

As we can see, our heuristics achieve performance very close to the optimum in most
cases. Only when both the link and the cache are small is there any marked di�erence in
performance. This is largely due to the small link capacity, only 3 Mbit/s, which allows us
to stream only one movie on the average. As both the link and cache grow in size, we can
achieve the same performance as the optimal caching strategy.

To test the performance of our heuristics in real-world size problems, we ran the heuris-
tics for 1000 movies. We varied the cache size between 12 and 560 Gbytes. The cache could
therefore hold on the average between 13.9 and 625 layers, or between 0.9 and 41.7% of
the total movie data. Given the average length of a movie Tavg , the average rate of a
movie ravg, and the client request rate �, we would need on the average Tavgravg� Mbit/s
of bandwidth to stream all the requested movies. We varied the link capacity between 10
and 150 Mbit/s, or between 1 and 15% of the total bandwidth required.

Because running the exhaustive search was not feasible for problems this large, we
approximated the best possible performance by calculating the revenue when the blocking
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Figure 8.2: Revenue as function of link capacity for 3 di�erent cache sizes

probability was zero. This means that all client requests are always satis�ed and it provides
us with an upper limit on the achievable revenue. In reality, this upper limit is not reachable
unless the link and cache capacities are su�ciently large to ensure that no client requests
are ever blocked. In our tests the smallest observed blocking probabilities were around
0.005%.

In Figure 8.2 we show the revenue relative to the no blocking case obtained with 3
di�erent cache sizes as a function of the link capacity. We can see that the revenue density
heuristic performs the best overall and that the performance di�erence is biggest when
the link capacity is smaller. As the link capacity increases, the performance di�erence
disappears. We also see that the popularity heuristic has the worst overall performance.

In Figure 8.3 we show the revenue obtained with 2 di�erent link capacities as a function
of the cache size. Here the di�erence between revenue density heuristic and the others is
clearer. For example, with a 1% link and a 20% cache (10 Mbit/s link and a cache of
250 Gbytes in our case), revenue density heuristic achieves 87% of the upper limit while
the revenue heuristic achieves only 79%. Again, as in Figure 8.2, when we have enough
link and cache capacity, the di�erence between the heuristics disappears. To illustrate the
tight con�dence intervals we observed, we plot the revenue density heuristic in the 1% link
case with the 99% con�dence intervals.

Overall, we can conclude that the revenue density utility heuristic has the best per-
formance of the three heuristics studied. This is especially true in situations where we
have a shortage of one of the resources, link capacity or cache size. This implies that the
revenue density heuristic predicts the usefulness of a layer more accurately than the other
two heuristics.

In Figure 8.4 we show the revenue obtained with the revenue density heuristic as a
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Figure 8.3: Revenue as function of cache size for 2 di�erent link capacities

function of both link capacity and cache size. We observe that if we have a shortage of
both resources, we should �rst increase the cache before increasing the link capacity. We
see that when the cache size is around 20% of the total movie data (250 Gbytes in our
case), further increase in cache size provides only small gains in revenue. At this point,
increasing the link capacity provides larger gains in revenue. This behavior can also be
observed in Figures 8.2 and 8.3 where we can see that the revenue increases roughly linearly
with the link capacity and roughly logarithmically with the cache size.

In Figure 8.5 we show the expected blocking probability for the revenue density heuris-
tic. Note that the plot shows 1 � B(c) and smallest expected blocking probability is
therefore obtained when the curve is close to 1. This plot re�ects the typical blocking prob-
abilities we obtained in all of our experiments, including the experiments in Sections 8.5,
8.6, and 8.7.

We also studied the e�ects of varying the parameter � in the Zipf-distribution and
varying the client request rate, �. Previous studies in Web caching and server access
dynamics have found that � can vary from 0.6 in Web proxies [10] up to 1.4 in popular
Web servers [59]. We studied four di�erent values of �, namely 0.6, 0.8, 1.0, and 1.3.
In Figure 8.6 we show the revenue obtained with each of the four parameter values for
three di�erent link capacities as a function of the cache size. We can see that the curves
corresponding to one value of � are close together and that there is a signi�cant di�erence
in groups of curves belonging to di�erent values of �. This implies that a decrease in �

(movies become more equally popular) requires signi�cant increases in link capacity and
cache size to keep the revenue at the same level. On the other hand, should � increase
(small number of movies become very popular), we can achieve the same revenue with
considerably less resources.
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Figure 8.4: Revenue as function of cache size and link capacity
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In Figure 8.7 we show the e�ects of varying the client request rate. We plot curves for
three di�erent values of � for two di�erent link capacities. The curves for �Low � at 6%
link� and �Medium � at 10% link� fall on top of each other. We can clearly see that the
client request rate has much less e�ect on the revenue than the Zipf-parameter. In some
cases, it is possible to counter the changes in request rate by increasing the link capacity
or cache size. For example, if the request rate goes from Low to Medium, increasing the
link capacity from 6% to 10% (60 Mbit/s to 100 Mbit/s in this case) keeps the revenue the
same.
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Figure 8.6: E�ect of Zipf-parameter � on revenue
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Figure 8.7: E�ect of client request rate on revenue

In conclusion, all three of our heuristics perform well under many di�erent link and
cache size combinations. The revenue density heuristic achieves the best performance under
constrained conditions.
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8.5 Negotiation about Stream Quality

In this section we study a negotiation scheme where in case the client's original request is
blocked, the service provider tries to o�er a lower quality stream of the requested object.
The client may then settle for this lower quality stream. The question we address is: how
much additional revenue is incurred with this �negotiation.� As we shall demonstrate, this
intuitively quite appealing approach adds very little to the revenue in most situations. For
simplicity we focus in this section on video objects that are encoded into L =2 layers:
a base layer and one enhancement layer. (Our arguments extend to the case of more
encoding layers in a straightforward manner.) Suppose that a client requests a 2�quality
stream (consisting of base layer and enhancement layer) of object m. Suppose that the
cache con�guration is given by c. Clearly, the original request can only be blocked if not
all requested layers are cached, that is, if cm < 2. If the client's original request for a
2�quality stream of object m is blocked the service provider tries to o�er a 1�quality (i.e.,
base layer) stream of the object. The service provider is able to make this o�er if the base
layer stream is not blocked.

Note that the negotiations increase the arrival rates of requests for base layer streams.
This is because the blocked 2�quality stream requests �reappear� as base layer stream
requests. With negotiations the arrival rates of base layer stream requests depend on
the blocking probabilities of 2�quality stream requests, that is, the system becomes a
generalized stochastic knapsack [72, Ch. 3]. Calculating the blocking probabilities of the
generalized stochastic knapsack, however, is quite unwieldy. Therefore we approximate
the blocking probabilities of the streaming system with negotiations. In typical streaming
systems the blocking probabilities are small, typically less than 5 %. The increase in the
arrival rates of base layer stream requests is therefore relatively small. We approximate
the blocking probabilities of the system with negotiations by the blocking probabilities of
the system without negotiations. The probability that the client's original request for a
2�quality stream of object m is blocked is approximately Bc(2;m). The probability that
the corresponding base layer stream is not blocked is approximately 1�Bc(1;m). Suppose
that the client accepts the quality degradation with probability Pacc(m). If the client does
not accept the o�er the negotiation terminates. Thus, given that the negotiation is entered,
it ends in a success (i.e., service provider and client settle for a base layer stream) with
probability (1 � Bc(1;m))Pacc(m). The long run rate (successful negotiations per hour)
at which negotiations settle for a base layer stream of object m is �p(2;m)Bc(2;m)(1 �

Bc(1;m))Pacc(m). Suppose that each successful negotiation resulting in the delivery of a
base layer stream of object m incurs a revenue of Rneg(1;m) (which may be di�erent from
R(1;m) as the service provider may o�er the base layer at a discount in the negotiation).
Thus, the long run total rate of revenue incurred from successful negotiations is

Rneg(c) = �
MX
m=1

Rneg(1;m)p(2;m)Bc(2;m)(1 �Bc(1;m))Pacc(m):

The long run total rate of revenue of the streaming service with negotiations is R(c) +
Rneg(c), where R(c), the revenue rate incurred from serving �rst�choice requests, is given
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by (8.3).

8.5.1 Numerical Results

We experimented with adding the renegotiation revenue to our tests. We �rst tested the
quality of the approximation used in calculating the blocking probability of the system
with renegotiation against the results obtained from our cache simulator. We varied the
link capacities between 10 to 120 Mbps. Our results show a close approximation of the
analytical experiments to the simulation experiments with an average error of 0.4�0.5% for
12 Gbyte cache and 0.7�1.1% for 560 Gbyte cache. The results presented here are from
the analytical experiments.

Figure 8.8 shows how much extra revenue renegotiation could bring relative to the
baseline revenue R(c). The revenue in Figure 8.8 is based on the assumption that the
client will always accept the lower quality version if one is available, i.e., Pacc(m) = 1 for
m = 1; : : : ;M . We also assumed that Rneg(1;m) = R(1;m) for m = 1; : : : ;M , i.e., the
revenue from the renegotiated stream is the same as if the client had requested the lower
quality stream in the �rst place. These two assumptions give us the maximum possible
gain from renegotiation.

As we can see from Figure 8.8, the largest gains from renegotiation are achieved when
the cache size is extremely small, only 1�2% of the total amount of data. The renegoti-
ation gains are almost insensitive to link capacity with the exception of very small link
capacities where the gains are slightly smaller. The maximum gain we observed is around
20% and the gain drops sharply as the cache size increases. The maximum gain would de-
crease as the client acceptance probability Pacc decreases. Also, if the cache size and link
capacity are large, the potential gain from renegotiation is typically well below 1%. We
can therefore conclude that renegotiation, although intuitively appealing, does not provide
any signi�cant increase in revenue in most situations. This is because renegotiation is only
applicable to blocked requests and one of the goals of a cache operator would be to keep
the expected blocking probability as low as possible.

8.6 Queueing of Requests

In this section we study a request queueing scheme where in case the client's request is
blocked, the service provider queues the request. With the queueing strategies, we expect
that the queued requests make use of the resources released by currently served requests.
This has the potential of increasing the resource utilization and thus, bringing additional
revenue. The question is how much additional revenue does it bring.

To answer this question, we used our cache simulator to obtain the results in this
section. To align the experiments with the real-world practice, we assume that a client will
cancel its request after waiting for some time, referred to as the request timeout period. We
model the timeout period using an exponential distribution with an average of 5 minutes.

We assume that the queue is of a �nite size and it can hold up to 100 requests. An
incoming request �nding a full bu�er will be blocked. We consider three di�erent strategies
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Figure 8.8: Increased revenue from renegotiation
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Figure 8.9: Increased revenue from queueing requests for bu�er size of 100

for ordering the requests in the queue, i.e., based on the order of request arrivals, their
required resources and the potential revenues.

Figure 8.9 shows how much extra revenue queueing of requests could bring relative to
the baseline revenue R(c). As we can see from the �gure, the gain from introducing the
queue is very small. The gain is not a�ected by the cache size and generally increases with
the link capacity.

With the limited bandwidth of the bottleneck link, which causes request blocking in
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the �rst place, the serving of one request from the queue will mean the blocking of another
incoming request. This results in a near zero gain in the number of requests served. A
possible gain can be achieved by changing the request service strategies, for example by
serving the request according to the potential revenue that it brings.

8.7 Is Partial Caching Useful ?

Consider a streaming system where clients are only interested in complete streams (con-
sisting of all L layers) and no revenue is incurred for partial streams (consisting of less
than L layers). The question we address is: in such a system is caching of partial streams
(e.g., base layers) bene�cial? Interestingly, the answer appears to be no.

We focus on the homogeneous two�layer case where the video objects are encoded into
L = 2 layers: a base layer of rate r1(m) and one enhancement layer of rate r2(m). For
simplicity we assume that (1) all videos have the same layer rates, i.e., r1(m) = rb and
r2(m) = re form = 1; : : : ;M , and (2) all videos have the same length T . We study a system
where clients request only complete streams (consisting of both base layer and enhancement
layer), i.e., p(1;m) = 0 for m = 1; : : : ;M . For ease of notation we write p(m) for p(2;m)

and note that
PM

m=1 p(m) = 1. We order the video objects from most popular to least
popular; thus, p(m) � p(m+ 1); m = 1; : : : ;M � 1. In the considered system no revenue
is incurred for streams consisting of only the base layer, i.e., R(1;m) = 0. We assume that
all complete streams incur the same revenue, i.e., R(2;m) = R for m = 1; : : : ;M .

We investigate a caching strategy that caches both base and enhancement layer of very
popular video objects. For moderately popular objects only the base layer is cached (and
the enhancement layer is streamed upon request over the bottleneck link of capacity C). For
relatively unpopular objects neither base nor enhancement layer is cached. Let N1 denote
the number of completely cached objects. Clearly, 0 � N1 � bG=(rb + re)T )c := Nmax

1 .
Let N2 denote the number of cached base layers. The N1 completely cached objects take up
the cache space N1(rb+re)T . Hence, 0 � N2 � b(G�N1(rb + re)T )=(rbT )c := Nmax

2 . The
investigated caching strategy caches base and enhancement layer of the N1 most popular
objects, that is, objects 1; : : : ; N1. It caches the base layers of the N2 next most popular
objects, that is of objects N1 + 1; : : : ; N1 +N2.

The probability that a request is for a completely cached object is P1 =
PN1

m=1 p(m).
The probability that a request is for an object for which only the base layer has been
cached is P2 =

PN1+N2

m=N1+1
p(m). Note that the probability that a request is for an object

which has not been cached at all is P3 = 1� P1 � P2.
We model the bottleneck link connecting the cache to the wide area network again as

a stochastic knapsack [72]. The bottleneck link is modeled as a knapsack of capacity C.
We refer to streams of completely cached video objects as class 1 streams. Class 1 streams
consume no bandwidth on the bottleneck link, that is, b1 = 0. The arrival rate of class 1
streams is �1 = �P1. Streams of video objects for which only the base layer is cached
are referred to as class 2 streams. Class 2 streams consume the bandwidth b2 = re. The
arrival rate for class 2 streams is �2 = �P2. Streams of video objects which have not been
cached at all are referred to as class 3 streams. Class 3 streams consume the bandwidth
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b3 = rb+ re and have an arrival rate of �3 = �P3. All streams have a �xed holding time T .
Our objective is to maximize the total long run revenue rate, or equivalently, the long

run throughput of requests (i.e., the long run rate at which requests are granted and
serviced). Towards this end let THk denote the long run throughput of class k requests.
Also, let TH denote the long run total throughput of requests. Clearly, TH = TH1 +

TH2 + TH3. Let Bk denote the probability that a request for a stream of class k is
blocked. Obviously, B1 = 0 since class 1 streams do not consume any bandwidth. Thus,
TH = �[P1 + P2(1�B2) + P3(1�B3)].

8.7.1 Numerical Results

We used our cache simulator to study partial caching. All the results in this and the
next section are obtained from the simulator. We used the same experiment setup (layer
rates, video lengths, and Zipf-parameter) as for evaluating the performance of the utility
heuristics in Section 8.4.2. In fact, we can consider the partial caching case as a special
case of the utility heuristics. Note that for the partial caching case the utilities of the base
and enhancement layer of a given movie are the same and thus base layer and enhancement
layer are cached together.

In our experiments we question the usefulness of partial caching where a portion of the
cache is reserved for caching base layers only. Doing so allows us to cache (at least the
base layers of) a larger number of movies for the same cache size. An intuitive question to
follow is whether trunk reservation is bene�cial. With trunk reservation a portion of the
link bandwidth, say C2 = x% of C, x = 0�100, is reserved for streaming the enhancement
layers of the class 2 movies which have base layers in the cache. We naturally expect that
a combination of these two strategies may give us the best throughput.

Figure 8.10 shows the normalized throughput as a function of the percentage of cache
space used for caching complete movies. The �gure also shows the throughput for di�erent
link reservation and cache sizes. The link reservation of 0% implies a complete sharing
of the link bandwidth between class 2 and class 3 streams. This case can be analyzed
using the stochastic knapsack formulation, see Section 8.3.3, which gives us the blocking
probabilities B2 and B3 and hence the throughput. On the other hand, the link reservation
of 100% implies a total blocking of class 3 streams. The link is solely used for streaming
enhancement layers for class 2 streams which have base layers cached. As we have only
one tra�c class, this case can be analyzed using the Erlang�B formula with the number of
trunks being C=re. For the other cases with the link reservations between 0 to 100%, we
use simulations to obtain the throughput.

The results con�rm our intuition that once the base layers are cached, it is bene�cial
to reserve some bandwidth to give us an optimum throughput. For example, if we reserve
30% of the cache space for complete movies, which also means that we reserve 70% of the
cache for base layers, then reserving any amount of bandwidth for streaming class 2 movies
will give us better throughput than complete sharing. However, we can clearly see from
Figure 8.10 that, for a given cache size, the maximum is always obtained at the right edge
of the plot, that is, when the whole cache is reserved for caching complete movies. In this
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Figure 8.10: Normalized throughput for partial caching and trunk reservation with C = 150
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Figure 8.11: Normalized throughput for partial caching and trunk reservation with di�erent
Zipf parameters

case, there are no class 2 streams and thus, the link is used exclusively for streaming the
class 3 movies.

Figure 8.11 shows the e�ect of varying the popularity of the movies. We observe



164 CHAPTER 8. DISTRIBUTION OF LAYERED ENCODED VIDEO

that the proportion of the cache space that needs to be reserved to achieve the optimum
throughput for the partial caching case changes with the Zipf parameter. This makes it
harder to dimension the cache properly to achieve the optimum throughput at all times.
Considering this di�culty and the fact that reserving the entire cache for caching complete
movies give the maximum throughput, our experiments indicate that the partial caching
is not bene�cial.

8.8 Related Work

There are only few studies on distributing video objects with caches, all of which are
complementary to the issues studied in this chapter. Rejaie et al. propose a proxy caching
mechanism [67] in conjunction with a congestion control mechanism [65, 66] for layered�
encoded video. The basic idea of their caching mechanism is to cache segments of layers
according to the objects' popularities: the more popular an object, the more complete are
the individual layers cached and the more layers are cached (partially). When streaming
an object to a client, the layer segments that are not cached at the proxy are obtained
from the origin server.

A related idea is explored by Wang et al. in their study on video staging [88]. With
video staging the part of the VBR video stream, that exceeds a certain cut�o� rate (i.e.,
the bursts of a VBR stream) is cached at the proxy while the lower (now smoother) part
of the video stream is stored at the origin server.

Sen et al. [78] propose to cache a pre�x (i.e., the initial frames) of video streams at the
proxy and to employ work�ahead smoothing while streaming the object from the proxy
to the client. The cached pre�x hides the potentially large initial start�up delay of the
work�ahead transmission schedule from the client.

Tewari et al. [85] propose a Resource Based Caching (RBC) scheme for video objects
encoded into one CBR layer. They model the cache as a two resource (storage space and
bandwidth) constrained knapsack and study replacement policies that take the objects'
sizes as well as CBR bandwidth into account. The replacement policies are evaluated
through simulations. Our work di�ers from RBC in that we develop an analytical stochastic
knapsack model for the two resource problem. Moreover, we analyze a streaming system
where videos are encoded into multiple layers.

8.9 Conclusion

In this chapter we have formulated an analytical stochastic knapsack model for the layered
video caching problem. We have proposed three di�erent heuristics for determining which
layers of which videos to cache. Through extensive numerical experiments we have found
that all our heuristics perform well and that the best performance is obtained with the
revenue density heuristic. Our heuristics are useful for cache operators in both provisioning
the caching system as well as deciding on-line the gain from caching a given layer of a given
video. To the best of our knowledge, this is the �rst study to consider an analytical model
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of this 2-resource problem.
We also considered two intuitive extensions, renegotiation and queueing of requests, but

found that they provide little extra gain to the cache operator. As a special case we con-
sidered a situation where clients only request complete video streams. Our results indicate
that in this special case, best performance is obtained if videos are cached completely.

There are also a number of avenues for future research, such as considering dynamically
changing request patterns. Furthermore, there are a number of special scenarios where
theoretical results may be obtainable.
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Chapter 9

Conclusion

This thesis has investigated content distribution on the Internet. In this chapter we will
present a summary of the contributions of this thesis and outline possible directions for
future work.

9.1 Summary

In the �rst part of this thesis, Chapters 3�5, we have studied client redirection in content
distribution architectures. We have presented the Location Data System (LDS) which
allows clients to locate copies of objects that are stored on di�erent object servers on the
Web. LDS is a small extension to the existing Domain Name System (DNS) and when a
client wants to locate an object, it performs a query on the whole URL and receives as a
response all the object servers which have a copy of the requested object. The LDS system
allows for incremental deployment and it can be �ne-tuned to reduce the number of query
messages sent into the network.

We have presented an architecture for an Internet-wide replicated directory service.
As an example of our architecture, we have shown how the current DNS system could
be implemented with the replicated architecture. The key feature of the new architecture
is that it allows us to store rapidly changing information and guarantee that the data is
coherent in the whole network. In addition, our architecture can signi�cantly speed up the
DNS queries. Our architecture can be deployed incrementally and one of its key features
is that it requires no changes to existing DNS software, nor does it change the syntax
or semantics of any existing DNS messages. We also perform an extensive performance
evaluation to determine suitable values for deciding how long can we allow nameservers to
cache the information obtained through our architecture.

As our third contribution in the �rst part of the thesis, we have performed an extensive
numerical evaluation of the performance of the client redirection mechanisms used by mod-
ern content distrbution networks. Modern CDNs use DNS to redirect clients using either
full or selective redirection. Using extensive simulation experiments we have quanti�ed
the cost of having to set up new TCP connections, as required by the selective redirection
mechanism, and our results have shown that this cost is typically extremely high. We have
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also veri�ed these simulation results with experiments on live servers on the Internet and
we have observed similar results.

In the second part of this thesis, Chapters 6�8, we have studied object replication in
content distribution architectures. We have studied object replication strategies in content
distribution networks. We formulated the problem of optimally placing object replicas
as a combinatorial optimization problem which we have shown to be NP-complete. We
have developed several di�erent heuristics to try to place objects in a CDN and we have
evaluated their performance on real Internet AS-level topologies. We have found that
heuristics which take into account the whole state of the network across all ASes yield
superior performance to heuristics which try to act based only on information available
locally to a single AS. We have also considered cooperation in peer-to-peer networks. We
have developed a model for evaluating the bene�ts of cooperation between the peer-to-peer
users in di�erent ASes. Our model also provides a simple mechanism to test if cooperation
would be bene�cial. Our results have shown that cooperation between neighboring ASes
typically yields high bene�ts which diminish as the distance between the cooperating ASes
increases.

As the second contribution in the second part of the thesis, we have considered optimal
content replication in peer-to-peer communities. We have distinguished between two types
of communities: content caches and content clubs. We have modeled the problem of
optimally replicating content in a community as an integer programming problem. The
solution of this problem provides us with an upper bound on hit-rate that can be achieved
by any algorithm. We have developed adaptive algorithms that replicate objects on-the-�y
and have compared the hit-rates with the upper bound. We have found that our algorithms
combined with a distributed least-frequently-used replacement policy provide near-optimal
hit-rates and replica pro�les. We have also provided a formulation of the initial integer
programming problem which takes into account hot-spots and balances the load evenly
across all peers.

As the �nal contribution of this thesis, we have investigated the distribution of layered
encoded video through caches. We considered the two-resource problem of cache stor-
age and network link capacity which we modeled using a stochastic knapsack model. We
proposed three heuristics to determine which layers of which videos we should cache to
maximize the accrued revenue. Through extensive numerical experiments we have found
that all our heuristics perform well and that the best performance is obtained with the
revenue density heuristic. A cache operator could use the heuristics we have developed to
determine on-line the utility of caching a given layer of a given video. We have also con-
sidered two intuitive extensions to the initial model: renegotiation of quality and queueing
of requests. Our results indicate that these extensions do not provide any signi�cant gains
in overall revenue. Finally, we have considered the problem where clients are interested
only in complete videos. We have found that in this case, caching only some layers is not
bene�cial and we should cache all layers of a video together.
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9.2 Directions for Future Work

This work has several possible avenues for future work. Each of the chapters outlines
ways in which the work presented in that chapter can be extended. The �eld of content
distribution and especially peer-to-peer networking holds much promise for future research.
Below we outline how the research in this thesis could be extended in this direction.

The new, emerging wireless and mobile ad-hoc networks are well suited for a peer-to-
peer-like content distribution system. The transient nature of these networks will require
new protocols and architectures for ensuring e�cient content delivery, both for static con-
tent and streaming media. These kinds of networks are likely to become commonplace in
the next years and they need to be studied. Accompanying this research, we also need to
build prototypes to test the new protocols and architectures in practice.

Some key issues in such networks are security, privacy, and object naming. Current
peer-to-peer networks do not o�er any protection against malicious users trying to inject
false content or to deny service from other users. In an environment where users rely
heavily on others, such as a wireless ad-hoc network, these issues must be resolved.

Also, in a network where all nodes participate in its operation, we need to ensure that
the privacy requirements are met. These requirements can depend on the application or
the user's preferences. Some users may even wish to remain completely anonymous; the
network should o�er this possibility.

We also need e�cient methods for �nding objects in these networks. This requires both
an e�cient naming scheme as well as query methods for �nding content. In a network where
content freely migrates from one node to another, naming schemes which tie the object into
a location, such as URLs, are inappropriate. New naming schemes need to be developed
and their performance evaluated. Query mechanisms for �nding the content are closely
tied to the naming system and their performance is critical to the overall performance of
the system. Hence, they need to be studied closely in order to avoid them becoming the
bottleneck of the system.
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Conclusion

Cette thèse a étudié la distribution de l'information sur l'Internet. Dans ce chapitre
nous présentons un sommaire de nos contributions et présentons des directions possibles
pour des travaux futurs.

Résumé

Dans la première partie de cette thèse, couvrant les chapitres 3 � 5, nous avons étudié
la redirection des clients dans des architectures de distribution de contenu. Nous avons
présenté le "Location Data System" (LDS) qui permet à des clients de localiser des copies
d'objets se trouvant sur di�érents serveurs d'objets sur le Web. LDS est une extension du
Domain Name System (DNS) existant. Quand un client veut localiser un objet, il envoie
une requête DNS à l'URL complète et reçoit comme réponse une liste de tous les serveurs
d'objets qui ont une copie de l'objet demandé. Le système LDS peut être mis en place
d'une manière incrémentale et il peut être modi�é a�n de réduire le nombre de requêtes
envoyées dans le réseau.

Nous avons présenté une architecture pour un service d'annuaire répliqué à l'échelle de
l'Internet. Comme exemple de notre architecture, nous avons montré comment le système
DNS actuel pourrait être réalisé avec cette architecture répliquée. L'atout principal de
cette nouvelle architecture est qu'elle nous permet de stocker des informations qui changent
rapidement et de garantir que les données sont cohérentes dans tout le réseau. De plus,
notre architecture peut réduire considérablement le temps de latence des requêtes DNS.
Notre architecture peut être déployée d'une manière incrémentale et une de ses qualités
principales est qu'elle n'exige aucune modi�cation des logiciels DNS existants, ni aucun
changement de syntaxe ou de sémantique des messages DNS. Nous avons également e�ectué
une évaluation des performances pour déterminer des valeurs appropriées de la durée de
temps pendant laquelle nous pouvons cacher l'information dans les serveurs de noms.

En tant que notre troisième contribution dans la première partie de cette thèse, nous
avons e�ectué une évaluation numérique de la performance des mécanismes de redirection
de client employés par les réseaux modernes de distribution de contenu. Les CDNs actuels
utilisent le DNS pour rediriger les clients, soit suivant la redirection totale ou la redirection
sélective. La redirection sélective nécessite l'ouverture de nouvelles connexions TCP et, en
utilisant des simulations, nous avons mesuré le coût associé à ces nouvelles connexions. Nos
résultats indiquent que ce coût est en général très élevé. Nous avons également véri�é ces
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résultats de simulation avec des expériences sur des serveurs de l'Internet et nous avons
observé des résultats semblables à nos simulations.

Dans la deuxième partie de cette thèse, couvrant les chapitres 6 � 8, nous avons étudié la
réplication des objets dans des architectures de distribution de contenu. Nous avons étudié
des stratégies de réplication d'objets dans les réseaux de distribution de contenu (CDN).
Nous avons formulé le problème de placement optimal des objets comme un problème
d'optimisation combinatoire et nous avons montré que ce problème est NP-complet. Nous
avons développé plusieurs heuristiques di�érentes pour placer des objets dans un CDN et
nous avons évalué leur performances sur de vraies topologies des systèmes autonomes (AS)
de l'Internet. Nous avons trouvé que les heuristiques qui tiennent compte de l'état entier
du réseau à travers tous les AS ont une performance supérieure aux heuristiques qui basent
leurs décisions seulement sur l'information disponible localement dans un AS. Nous avons
également considéré la coopération dans des réseaux de type "peer-to-peer". Nous avons
développé un modèle pour évaluer les avantages de la coopération entre les utilisateurs
de réseaux peer-to-peer dans les di�érent AS. Notre modèle fournit également un test
simple pour véri�er si la coopération serait avantageuse. Nos résultats ont prouvé que la
coopération entre AS voisins rapporte des avantages élevés, mais ces avantages diminuent
quand la distance entre les deux AS augmente.

Comme deuxième contribution dans la deuxième partie de la thèse, nous avons consi-
déré la réplication optimale de contenu dans les communautés peer-to-peer. Nous avons
distingué deux types de communautés : les caches de contenu et les clubs de contenu. Nous
avons modélisé le problème de réplication optimale de contenu dans une communauté
comme un problème de programmation de nombre entier. La solution à ce problème nous
fournit une borne supérieure au taux de succès (ou "hit") qui peut être obtenu. Nous avons
développé des algorithmes adaptatifs qui répliquent des objets dynamiquement et avons
comparé les taux de "hit" à la borne supérieure. Nous avons constaté que nos algorithmes,
combinés avec une politique de remplacement de type LFU distribué nous donnent des
taux de "hit" et des pro�ls de réplication qui sont quasi-optimaux. Nous avons également
présenté une formulation du problème initial qui tient compte des "hot-spots" et équilibre
la charge à travers tous les n÷uds.

Comme contribution �nale de cette thèse, nous avons étudié la distribution de vidéos
encodées en couche et distribuées à travers des caches. Nous avons considéré le problème
avec deux ressources, la mémoire de cache et la capacité de lien de réseau, et nous l'avons
modélisé en utilisant un modèle de knapsack stochastique. Nous avons proposé trois heu-
ristiques pour déterminer quelles couches de quelles vidéos doivent être cachées pour maxi-
miser le revenu accru. Grâce à des expériences numériques nous avons constaté que toutes
nos heuristiques o�rent de bonnes performances et que la meilleure performance est ob-
tenue avec l'heuristique dite "revenue density". Un opérateur de cache pourrait utiliser
ces heuristiques pour déterminer dynamiquement l'utilité de cacher une couche donnée
d'une vidéo donnée. Nous avons également considéré deux extensions intuitives au modèle
initial : la renégociation de qualité et une �le d'attente pour les requêtes. Nos résultats
indiquent que ces extensions ne fournissent pas de gain signi�catif dans le revenu global.
De plus, nous avons considéré le problème où des clients sont intéressés seulement par des
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vidéos complètes. Nous avons trouvé que dans ce cas particulier, il n'est pas avantageux
de cacher seulement quelques couches d'une vidéo et que nous devrions cacher toutes les
couches d'une même vidéo ensemble.

Orientations pour des travaux futurs

Cette étude donne lieu à plusieurs orientations possibles pour des travaux futurs. Cha-
cun des chapitres présente des possibilités de continuation des travaux du chapitre. La
distribution de l'information, et surtout les réseaux peer-to-peer, sont des domaines très
prometteurs pour la recherche future. Nous présentons maintenant comment les travaux
de cette thèse pourraient être étendus dans cette direction.

Les nouveaux réseaux, tels que les réseaux "ad-hoc" sans �l et mobiles, sont appropriés
à une distribution de contenu de type peer-to-peer. La nature éphémère de ces réseaux
exigera de nouveaux protocoles et de nouvelles architectures pour assurer une distribution
de contenu e�cace, aussi bien du contenu statique que du contenu 'streamé'. Ces nouveaux
réseaux sont susceptibles de devenir très populaires et ils méritent des études approfondies.
Accompagnant cette recherche, il est aussi important de développer des prototypes pour
tester les nouveaux protocoles et les nouvelles architectures dans la pratique.

Quelques problèmes clés dans de tels réseaux sont la sécurité, la protection de la vie
privée, et le nommage des objets. Les réseaux actuels peer-to-peer n'o�rent aucune protec-
tion contre des utilisateurs malveillants essayant d'injecter de faux contenus ou de refuser
le service aux autres utilisateurs. Dans un environnement où les utilisateurs sont fortement
liés l'un à l'autre, tel que dans un réseau ad-hoc sans �l, ces problèmes doivent être résolus.

En outre, dans un réseau où tous les n÷uds participent à son fonctionnement, nous
devons nous assurer que la protection de la vie privée des utilisateurs est assurée. La
manière d'atteindre ce but peut dépendre de l'application ou des préférences de l'utilisateur.
Quelques utilisateurs peuvent même souhaiter rester complètement anonymes et le réseau
devrait o�rir cette possibilité.

Nous avons également besoin de méthodes e�caces pour trouver des objets dans ces
réseaux. Ceci exige un système de nommage e�cace mais aussi des méthodes pour trouver
le contenu. Dans un réseau où le contenu passe librement d'un n÷ud à l'autre, des systèmes
de nommage liant le nom d'un objet à une location, tel que les URLs, sont inadéquats.
De nouveaux systèmes de nommage doivent être développés et leur performances doivent
être évalués. Les mécanismes de requête pour trouver le contenu sont étroitement liées
au système de nommage et leur performance est critique à la performance globale du
système. Par conséquent, ils doivent être étudiés d'une manière approfondie a�n d'éviter
qu'ils deviennent le goulot d'étranglement du système.
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Annexe A

Résumé de la thèse en français

A.1 Introduction

Ce chapitre résume les contributions de chaque chapitre en français. Pour chaque cha-
pitre, nous présentons les motivations, une sommaire et les résultats principaux.

A.2 Distribution de l'information

Dans le chapitre 2 nous présentons les architectures de distribution de contenu utilisées
sur Internet. Le modèle client-serveur traditionnel n'est pas su�sant pour garantir une
bonne qualité de service quand la charge sur un serveur devient trop élevée. La première
solution est d'utiliser des caches web à côté des clients pour réduire cette charge (Sec-
tion 2.2). Cette solution, bien qu'e�cace, a quand même quelques inconvénients majeurs.
Notamment, le fournisseur de contenu n'a aucun contrôle sur les objets stockés dans les
caches, ce qui rend di�cile la construction des sites web avec un contenu dynamique.

Pour résoudre ce problème, les réseaux de distribution de contenu (content distribution
networks, ou CDNs) ont été développés (Section 2.3). Dans ces réseaux, le fournisseur de
contenu con�e le contenu à un tiers, c'est-à-dire, au distributeur de contenu. Le distributeur
a mis en place des serveurs de contenu près des utilisateurs. Ces serveurs de contenu sont
similaires aux caches web traditionnels, mais avec une di�érence importante. Dans les
réseaux de distribution le fournisseur de contenu peut contrôler comment son contenu est
stocké dans les serveurs de contenu, ce qui permet un contrôle plus e�ectif sur le contenu
dynamique des sites.

Les réseaux de type "peer-to-peer" (Section 2.4) sont une nouvelle forme de distribution
de contenu. Dans ces réseaux, chaque utilisateur est en même temps client et serveur.
Les utilisateurs fournissent de l'espace disque pour stocker les objets dans le réseau. Pour
trouver les objets stockés dans le réseau, il y a un service d'annuaire, qui peut être centralisé
ou distribué. Des solutions hybrides sont aussi apparues récemment.
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Fig. A.1 � Codage d'URL en DNS

A.3 Localisation des objets

Dans le chapitre 3, nous présentons notre architecture pour localiser des copies d'objets
qui se trouvent dans les di�érents serveurs d'objet.

A.3.1 Motivation

Dans le Web actuel, les clients n'ont aucun moyen pour localiser des objets qui peuvent
se trouver sur n'importe quel serveur. En particulier, ce problème est présent dans les
hiérarchies de cache ou les requêtes sont traitées d'une manière statique. En plus, une
hiérarchie se termine par la racine et ne peut s'étendre plus loin. Ceci peut être un problème
parce qu'il peut y avoir un cache rapide contenant l'objet désiré près du serveur d'origine
qui, à son tour, peut être surchargé ou posséder une connexion très lente. Ce sont ces
problèmes dans l'infrastructure actuelle qui nous ont motivés dans notre travail.

A.3.2 Location Data System (LDS)

Dans cette section, nous présentons une résumé de notre solution que nous avons baptisé
le �Location Data System� ou �LDS�. Le LDS peut être vu comme une boîte noire qui
fournit le service de localisation aux clients. La boîte noire prend l'URL fourni par le client
et retourne une liste contenant les adresses IP de tous les serveurs possédant une copie de
cet URL. Au lieu de donner l'URL complet à la boîte noire, le client peut aussi utiliser un
pré�xe de l'URL ; dans le cas limite, ce pré�xe se réduit au nom de la machine et, dans ce
cas, le service LDS est identique au service DNS (Domain Name System).

Étant donné les similarités entre LDS et DNS, nous avons décidé de baser le LDS
sur le DNS. En fait, pour réaliser le service LDS, il su�t d'ajouter un nouveau type
de �resource record� (RR) dans le DNS. Chacun de ces nouveaux RRs est associé à
un URL et contient les adresses des serveurs possédant une copie de cet URL. Cette
modi�cation ne nécessite qu'un travail minimal parce que le DNS contient déjà di�é-
rents types de RRs. Ajouter un RR supplémentaire dans un serveur de noms ne pré-
sentera pas de grandes di�cultés. La Figure A.1 montre comment on peut coder l'URL
http ://www.eurecom.fr/�bob/index.html en utilisant le codage du DNS.

Dans le chapitre 3, nous présentons la manière d'appliquer le LDS dans le contexte
de caches Web. Le problème majeur du LDS est la quantité de tra�c injectée dans le
réseau parce que le client doit envoyer une requête LDS pour chaque URL. Nous proposons
quelques solutions possibles à ce problème. Un deuxième question ouverte dans le LDS est
de choisir parmi les serveurs possédant l'URL donné. Dans ce chapitre nous o�rons quelques
solutions possibles.
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A.4 Réplication de DNS

Domain Name System (DNS) est une base de données distribuée contenant les in-
formations vitales pour le bon fonctionnement d'Internet. Le Chapitre 4 présente notre
architecture pour un DNS répliqué.

A.4.1 Motivation

Le DNS actuel présente deux défauts majeurs. Premièrement, le DNS n'est pas adapté
pour stocker de l'information qui change rapidement. Ceci est utile pour résoudre les pro-
blèmes liés à la surcharge d'un serveur Web. Par exemple, si la charge sur un serveur
devient trop importante, le serveur peut répliquer son contenu sur un autre serveur et
noter ce fait dans le DNS. Mais, comme les clients peuvent garder les information obtenues
du DNS dans leur cache, ils ne seraient pas informés du fait que le serveur s'est répliqué.
Deuxièmement, le temps que prend une requête DNS peut être long parce que le client
doit contacter un serveur lointain pour obtenir l'information.

A.4.2 Architecture

Notre architecture est basée sur une base de données répliquée sur plusieurs serveurs
que nous appelons �serveur répliqué�. Ces serveurs sont placés de manière à les mettre près
des clients (au minimum un serveur répliqué par pays). Ils contiennent chacun toute la
base de données du DNS et peuvent donc répondre à toutes les requêtes. Quand un client
envoie une requête DNS, il l'enverra au serveur répliqué le plus proche qui lui répondra.
Grâce à la proximité du serveur répliqué, le client obtiendra la réponse rapidement.

A�n de maintenir la cohérence dans la base de données, les serveurs répliqués sont
connectés soit par multicast, soit par une liaison satellite. Chaque serveur répliqué est
responsable d'une partie de la base de données et, quand il y a une modi�cation, le serveur
responsable envoie cette modi�cation à tous les autres serveurs.

Dans ce chapitre nous présentons aussi une analyse de performance de notre architec-
ture. Nous étudions les problèmes liés à la cohérence de la base de données et la manière
de réduire le tra�c en maintenant une cohérence acceptable. Nous faisons aussi quelques
expériences sur Internet a�n de donner une indication du gain possible en temps pour une
requête donnée.

Dans notre évaluation, nous nous concentrons sur le nombre de requêtes envoyées aux
serveurs de nom et aussi sur le pourcentage de réponses incorrectes causées par des change-
ments dans les données. Notre évaluation suppose une architecture où le serveur de noms
local peut cacher certaines informations reçues d'un serveur répliqué. Cette architecture
est montrée dans �gure 4.4 (page 71).

La fraction de requêtes envoyées par le serveur local vers le serveur répliqué est

1

�T + 1
(A.1)
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Fig. A.2 � Comparaison de fraction de réponses incorrectes à la fraction de requêtes

où � est le taux de requêtes et T le temps durant lequel le serveur local peut cacher les
informations.

La fraction de réponses incorrectes est

1
1
�
+ T

�
e��T + �T � 1

�

�
(A.2)

où � est le taux de changement des informations.
La Figure A.2 montre une comparaison des fractions de réponses incorrectes et les

requêtes envoyées vers le serveur répliqué en fonction de T .
A la �n du chapitre nous montrons comment faire la transition du système DNS actuel

vers notre architecture répliquée d'une manière incrémentale. Nous considérons également
les questions liées à la sécurité de notre architecture et à la résistance aux pannes.

A.5 Redirection dans les CDNs

Le Chapitre 5 présente nos travaux sur l'évaluation des performances des di�érentes
méthodes de redirection pratiquées par les réseaux de distribution de contenu.

A.5.1 Motivation

Les réseaux de distribution de contenu (CDN) utilisent actuellement des méthodes
di�érentes pour diriger les clients vers les serveurs de contenu. Le coût de cette redirection
a une in�uence directe sur le temps que l'utilisateur doit attendre pour avoir les documents
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Fig. A.3 � Performance de deux méthodes de redirection

demandés. Nous nous sommes concentrés sur ce problème a�n de pouvoir évaluer l'impact
de ces méthodes de redirection sur l'utilisateur.

A.5.2 Résultats

En utilisant les simulations et les expériences sur Internet nous avons comparés deux
méthodes de redirection actuellement utilisées par les di�érents CDNs. La première, la
redirection sélective, utilisée par Akamai [3], consiste à aller jusqu'au serveur d'origine
pour avoir la page HTML, puis à aller sur un serveur de contenu pour avoir les images
sur la page. La deuxième méthode, la redirection totale, utilisée par d'autres CDNs (par
exemple Adero [2] et Digital Island [16]) et, dans une moindre mesure, par Akamai aussi,
consiste à diriger le client sur le serveur de contenu pour tous les objets.

La redirection sélective nécessite l'ouverture d'une nouvelle connexion TCP vers le
serveur de contenu. L'ouverture de cette nouvelle connexion peut, dans le pire de cas,
prendre plusieurs secondes, qui augmentent le temps d'attente perçu par l'utilisateur. La
redirection totale peut béné�cier de la connexion ouverte et d'une fenêtre TCP plus grande,
ce qui peut réduire le temps d'attente pour l'utilisateur.

Dans nos simulations et expériences, nous avons constaté que la redirection sélective
a, en général, une performance supérieure à celle de la redirection totale. Avec la redirec-
tion totale, il est possible de répliquer des pages web de manière à avoir une performance
identique à la redirection sélective mais, dans ce cas, le fournisseur de contenu doit choi-
sir, typiquement à la main, les objets à répliquer. La redirection sélective atteint ce but
automatiquement.

Figure A.3 montre une comparaison des performances des deux méthodes de redirection.
Pour plus de détails sur la �gure, voir section 5.5.
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A.6 Réplication dans les réseaux CDN

Nous présentons notre travail sur la réplication des objets dans un réseau de distribution
de contenu dans le chapitre 6. Ce chapitre contient aussi une étude sur la coopération dans
les réseaux "peer-to-peer".

A.6.1 Motivation

Un CDN possède un certain nombre de serveurs de contenu. Les clients envoient des
requêtes pour les objet stockés sur ces serveurs. Le problème est de savoir comment répli-
quer les objets a�n d'obtenir la meilleure performance possible. La performance peut être
dé�nie de plusieurs façons mais, dans ce chapitre, nous utilisons comme métrique le nombre
de "hops" dans le réseaux, ce qui correspond approximativement au temps de chargement
d'un objet.

A.6.2 Résultats

Nous modélisons le problème comme un problème d'optimisation combinatoire. Soient
I serveurs, chacun avec une capacité Si et un taux de requête �i, � =

P
i �i, J objets de

tailles bj et une probabilité de requête pj . Le nombre de "hops" moyen qu'une requête doit
traverser est alors

C(x) =
IX
i=1

JX
j=1

sijdij(x) (A.3)

où sij = �ipj=� et dij(x) est la distance la plus courte de i à une copie d'objet j. La
matrice x est de�nie par les variables xij

xij =

(
1 si l'objet j est stocké au serveur i;

0 sinon:

Le problème est de minimiser C(x) sous les contraintes de stockage

JX
j=1

bjxij � Si i = 1; : : : ; I

Nous démontrons que ce problème est NP-complet. Nous développons quatre heuris-
tiques et évaluons leur performances en utilisant une topologie réelle d'une partie d'Inter-
net. La meilleure performance est obtenue quand la stratégie de réplication utilise tous les
serveurs avec une vue globale. Cette stratégie est toujours supérieure aux stratégies qui se
limitent à une vue locale.

La Figure A.4 montre les performances de nos heuristiques avec 1000 objets et 549
serveurs.
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Fig. A.4 � Performance des heuristiques de placement

Nous étudions également la coopération dans les réseaux peer-to-peer, tels que Napster
et Gnutella. Nous développons un modèle de coopération. Nous pouvons utiliser ce modèle
comme un test pour voir si la coopération est avantageuse. Si

1

2

2K�LX
j=K+1

(pjdavg + pjdavg)�
1

2

2K�LX
j=L+1

pjDAB (A.4)

est positif, la coopération est avantageuse. La Figure A.5 montre la valeur de (A.4)
pour K = 50.

Nos résultats montrent que la coopération entre les noeuds dans un réseau peer-to-peer
peut considérablement améliorer la performance obtenue par les utilisateurs.

A.7 Les communautés peer-to-peer

Le Chapitre 7 présente la réplication optimale de contenu dans les réseaux peer-to-peer.

A.7.1 Motivation

Récemment, les réseaux peer-to-peer sont devenus très populaires. Pour les utilisateurs
sur un campus (université ou entreprise), les ressources, la capacité de stockage et du
réseau sont souvent utilisées d'une manière sous-optimale. Notre but est de développer
des algorithmes pour la réplication des objets et la localisation de ces copies dans une
communauté peer-to-peer.

Nous considérons deux cas : Le premier est le cache de contenu et dans ce cas, la
communauté est comme un cache partagé. Le deuxième cas est le club de contenu qui
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fonctionne comme un vidéo club. Le club o�re une sélection de contenu qui est répliqué
sur les noeuds.

A.7.2 Résultats

Nous développons le problème comme un problème de "integer programming" qui nous
donne la solution optimale. La probabilité de trouver un objet dans la communauté est
donnée par

P (hit) =

JX
j=1

qj(1�

IY
i=1

p
xij
i ) (A.5)

où qj est la probabilité de requête d'objet j, pi la probabilité que le noeud i soit en
marche et xij est 1 si l'objet j est stocké dans noeud i et 0 sinon.

Le but est de maximiser P (hit) sous les contraintes

JX
j=1

bjxij � Si; i = 1; : : : ; I (A.6)

Cette solution est "académique" car elle nécessite la connaissance des popularités des
objets et les informations sur le comportement des noeuds. Notre algorithme utilise un
double hachage et ceci nous donne les stratégies pour la réplication et la localisation.

Notre algorithme est le suivant : Supposons que X veut obtenir objet j.

1. X détermine Y1, le noeud gagnant pour j.
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2. X envoie la requête à Y1.
� Si Y1 a j, il le retourne à X.
� Si Y1 n'a pas j, Y1 détermine les gagnants suivants, Y2; : : : ; YK , et envoie un "ping"
pour savoir si j est dans ces noeuds.

� Si l'un d'entre eux a une copie de j, Y1 le prend, l'envoie à X et crée une copie à
Y1. Si j n'est dans aucun de Y2; : : : ; YK , Y1 le cherche en dehors de la communauté
et le stocke.

Nous étudions les performances de cet algorithme avec un simulateur et les résultats
indiquent qu'en utilisant une politique de remplacement LFU distribué, la performance
obtenue est presque optimale. La politique de remplacement LRU o�re une moins bonne
performance.

La Figure A.6 montre les taux de hit obtenus par les di�érentes politiques de rempla-
cement.

La Figure A.7 montre le nombre de copies en fonction de la popularité de l'objet pour
LRU, LFU, et le nombre optimal qui maxmimise (A.5).

Dans le cas d'un club de contenu, nous devons décider combien de copies d'un objet
nous allons créer quand l'objet est introduit au club. Figure A.8 montre le taux de hit en
fonction du nombre de copies initiales (L) et le nombre de gagnants qui sont "pingés" (K).

A.8 Vidéo en couches et les caches

Le Chapitre 8 présente la distribution de la vidéo encodé en couches.
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A.8.1 Motivation

Dans un cache web traditionnel, il su�t de décider quels objets doivent être stockés
dans le cache pour obtenir la meilleure performance. Pour les objets vidéo encodés en
couches, ce problème devient plus compliqué. Nous devons décider non seulement quels
objets stocker, mais aussi quelles couches de quelles vidéos nous devons stocker, tout en
tenant compte des contraintes sur le décodage, c'est à dire, que les couches basses doivent
être présentes pour décoder les couches plus hautes.
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Fig. A.9 � Performance des heuristiques

A.8.2 Approche

Nous avons deux ressources, espace de disque dans le cache et capacité du lien entre
le cache et le reste du monde, que nous devons utiliser pour maximiser le revenu. Nous
modélisons le lien comme un "knapsack" stochastique et nous essayons des stratégies a�n
de décider quels objets mettre dans le cache.

Le problème revient à maximiser

R(c) = �

MX
m=1

LX
j=1

R(j;m)p(j;m)(1 �Bc(j;m)) (A.7)

sous la contrainte

S(c) =
MX
m=1

cmX
l=1

rl(m)T (m) � G: (A.8)

Pour décider les couches à cacher, nous avons développé des heuristiques parce que
le problème ne peut être résolu d'une manière analytique et parce qu'une énumération
exhaustive prendrait trop de temps de calcul. Nous développons trois heuristiques et, avec
des simulations, nous observons leur performances dans di�érentes situations.

La Figure A.9 montre les performances de nos heuristiques en fonction de la capacité
du lien et celle du cache.

Nous avons aussi considéré la négociation de la qualité, mais nos résultats montrent
que la négociation n'apporte que des gains secondaires.


