
Abstract

This paper examines the common uses and
characteristics of demand−driven surrogate origin
servers (also known as Reverse Proxies and HTTP
Accelerators), attempts to motivate the definition of a
distinct role for them, suggests items for consideration
during the development of such a framework, and
identifies issues associated with current
implementations.

The author’s primary goal is to encourage discussion
and further research of these points.

1 Introduction

A surrogate origin server (also known as a reverse
proxy or HTTP accelerator) is a device that serves
requests on behalf of an origin server (known as its
master origin server)[1].

Demand−driven surrogate origin servers are populated
by the traffic flowing through them; when a client
requests an object that is not resident, the surrogate will
fetch it from its master origin server. Note that a
demand−driven surrogate is distinct from a replica,
which does not necessarily use the HTTP to
communicate with the master, and is generally not
populated by traffic flowing through it; instead, content
is pushed out to replicas as it is published.

1.1 Previous Work

Although demand−driven surrogates have been used
for some time, most previous literature has focused on
performance issues[16], benefits of their use[14], and
issues such as methods of directing requests to
them[15].

A surrogates birds−of−a−feather meeting was
organized by Ted Hardie at the 4th International Web
Caching Workshop in 1999[11], which resulted in the
establishment of a surrogate−specific mailing list[12].
The IETF Web Replication Working Group[4] has a
taxonomy document[1] in process that establishes
terminology such as ’surrogate’ and ’demand−driven’ .

1.2 Current Practice

Currently, many proxy vendors (such as Inktomi[5],
Network Appliance[6], Novell[8] and NLANR[9])
allow their products to be used in "HTTP Accelerator"

or "Reverse Proxy" mode, where the device is
configured to cache and forward traffic to a particular
Web server. So−called "Content Delivery Networks"
such as Akamai[10] and Digital Island[7] also leverage
proxy software in a similar manner, to distribute
content so that it is close to users.

Generally, these devices attempt to conform to the
requirements for a proxy, as specified in HTTP/1.1[2].
To operate as a surrogate, they "reverse" themselves, so
that they appear as an origin server to clients, accepting
only traffic for their master origin server.

In normal operation, demand−driven surrogate origin
servers are deployed and maintained by (or on behalf
of) the publisher of a Web site, rather than directly or
indirectly for end users, as a proxy would be. This is
done for a number of reasons, including:
� Reduction of load on the master origin server
� Reduction and flattening of network traffic to the

master origin server
� Distribution of objects to the ’edge’ of the network,

in order to improve user−perceived latency
� Introduction of content transformation or other

value−added services
� Increased security, by forcing clients to

communicate through an intermediate

Surrogate deployments have been observed to vary in
several ways, including:
� Proximity − surrogates may be deployed close to

the master origin server to reduce load on it, or near
end users to reduce network traffic and improve
perceived latency.

� Selection of surrogate objects − entire Web sites
may be routed through surrogates, or a subset of a
site’s objects may be nominated for routing through
them, depending on the effect desired, and the
nature of the surrogate.

� Number of surrogates − surrogates may be deployed
in any number, from one to thousands.

� Number of master origin servers − a surrogate may
be configured to accept traffic for multiple master
origin servers, identifying the appropriate master
through examination of request characteristics (such
as Host header or Request−URI).

1

On Defining a Role for Demand−Dr iven Surrogate Or igin Servers
Mark Nottingham <mnot@akamai.com>

Akamai Technologies San Mateo, CA, USA

� Directing traffic to the surrogate − any number of
mechanisms may be used to distribute requests
between multiple surrogates, including DNS or
BGP manipulation, Layer 4, Layer 7 or "Content
Aware" switching[13], and reference modification.

� Request and response modification − surrogates
may perform any number of actions which may
transform either the request (particularly the
Request−URI), the response (e.g., transcoding), or
both.

2 Motivating a Surrogate Role

Proxies have a well−defined role in the HTTP;

An intermediary program which acts as both a
server and a client for the purpose of making
requests on behalf of other clients. Requests are
serviced internally or by passing them on, with
possible translation, to other servers. A proxy
MUST implement both the client and server
requirements of this specification. A transparent
proxy is a proxy that does not modify the request or
response beyond what is required for proxy
authentication and identification. A non−transparent
proxy is a proxy that modifies the request or
response in order to provide some added service to
the user agent, such as group annotation services,
media type transformation, protocol reduction, or
anonymity filtering. Except where either
transparent or non−transparent behavior is
explicitly stated, the HTTP proxy requirements
apply to both types of proxies.

Demand−driven surrogates operate in a similar fashion,
in that they implement both client and server
requirements, and may also implement a cache. These
similarities are the most likely cause of the widespread
use of proxy software to effect a surrogate.

However, surrogates are used in a very different
context; they appear to downstream clients as an origin
server; the surrogate’s address is part of the location
identifier[3] for a resource it serves. Because of this, a
surrogate can be more accurately classified as a
gateway;

A server which acts as an intermediary for some
other server. Unlike a proxy, a gateway receives
requests as if it were the origin server for the
requested resource; the requesting client may not be
aware that it is communicating with a gateway.

A protocol−correct definition of a surrogate would
thus be a gateway which uses HTTP on its upstream
connection and which may implement a cache. While
this satisfies the need to define the basic requirement

for such a device, it does not address the expectations
of current users, or the opportunities that such devices
offer.

One underlying reason for this is the general nature of
requirements for gateways in the HTTP; in most cases,
the specification makes little distinction between the
requirements for a proxy and a gateway. The gateway
requirements are intended to be applied to any device
which acts on behalf of another server, without regard
to the communication protocol between them.

This can cause some conflict when considering cache
implementation. A client cache acts on behalf of a
client, either in a user−agent a proxy. Caches are
encouraged to exhibit semantic transparency;

A cache behaves in a semantically transparent
manner, with respect to a particular response, when
its use affects neither the requesting client nor the
origin server, except to improve performance.
When a cache is semantically transparent, the client
receives exactly the same response (except for hop−
by−hop headers) that it would have received had its
request been handled directly by the origin server.

Semantic transparency is a necessary quality for a
client cache, because the proxy cannot represent the
origin server faithfully; they do not have a trust
relationship. Surrogates, however, do have such a
relationship by nature, which allows them to act on a
server’s behalf in what may be a semantically non−
transparent fashion.

Notice that a non−transparent surrogate does different
things than a non−transparent proxy, which reduces
transparency "in order to provide some added service to
the user agent"; more often than not, a surrogate
reduces transparency in order to add service on the
origin server’s behalf.

A related term in the HTTP, first−hand, also deserves
reconsideration in the light of surrogacy;

A response is first−hand if it comes directly and
without unnecessary delay from the origin server,
perhaps via one or more proxies. A response is also
first−hand if its validity has just been checked
directly with the origin server.

Because surrogates operate in close concert with origin
servers, it would be advantageous if their responses
were considered first−hand as well. As we will see,
considering surrogate’s responses first−hand makes
them much more useful, but also increases the need for
standard methods of controlling them, and careful
consideration of the impact of such measures.

2

Finally, there are several second−order requirements in
the HTTP for gateways and caches which arguably
should not apply to surrogates because of their nature.
A separate role for them would enable clarification of
these issues. For example, clients are given
mechanisms (such as Cache−Control and Pragma
request headers) which allow them to communicate
how the cache should handle requests on their behalf.
In a surrogate model, these behaviors may be
counterproductive.

Considering the opportunities offered by surrogates,
potential pitfalls in their implementation, and the state
of current implementations, it would be advantageous
to define a distinct role for surrogates. Such a
definition could take form as a group of extensions,
recommendations and further requirements for a
gateway which uses HTTP for upstream connections
and implements a cache, but should be distinct from
these more general roles, to reduce confusion.

3 Considerations for a Surrogate Role
Definition

Defining a framework for demand−driven surrogate
origin servers necessitates consideration of many
factors. This section identifies relevant issues for
further discussion and research.

3.1 Surrogate Configuration

At the most basic level, a surrogate needs to be
configured with the identity of an origin server (or
servers) to forward traffic to. However, it is often
desirable to configure surrogates with other
information, including:

� Encryption or authentication information required
by the master origin server

� Default object handling information, including
coherence

� Specific object handling information
� Access control lists
� URI rewriting
� Other special instructions to the surrogate

In general, configuration of surrogates is needed to
allow them to represent the origin server accurately,
and to take full advantage of the opportunities they
afford. For configuration to take place, there must be a
mechanism that specifies how it is to be applied to
request and response messages that the surrogate
handles.

Possible configuration mechanisms include:
� In−Request − within the request−URI itself, or

using Request HTTP headers. For instance, the
master origin server identity may be contained in
the Request−URI submitted to the surrogate, but
stripped from it before it is forwarded to the master,
or it may be derived from the Host request header.

� In−Response − some configuration, especially
object handling information, may be communicated
in response HTTP headers from the master origin
server.

� Manual − configuration through a console, terminal
or other local interface.

� Out−Of−Band − configuration may be possible
through a remote mechanism which, for example,
may resemble an RPC interface, or through a
separate file which dictates how to apply
configuration. This is particularly effective for
configuration of large numbers of surrogates.

Standardizing both configuration mechanisms and
common configuration directives is an interesting topic
for future work. In−Response mechanisms easily lend
themselves to standardization. For example, a
"Surrogate−Control" response header, which could be
used to communicate configuration information,
including freshness control, in a manner similar to
Cache−Control response headers. Out−Of−Band
configuration has similarly interesting possibilities. No
matter what the configuration mechanism, interactions
between configuration directives and HTTP
mechanisms should be carefully considered.

3.2 A New Consistency Model

Cache consistency is important to surrogates because of
their scope, and content publishers’ expectations. If a
client−based cache is incoherent, only those clients
using it will be affected; if a surrogate cache is
incoherent, potentially all clients for a service will be.

The basic tools of caching (freshness and validation)
are still useful to a surrogate. However, they are used
in a different context; surrogates typically serve a
smaller, more defined footprint of objects, and their
close relationship with origin servers allows them to
cache content differently than a downstream cache
might. For example, a content publisher who needs to
record every access to an object will mark it
uncacheable. Since surrogate logs are usually available
to the publisher, it would be useful to have a way to
allow the surrogate to cache the object, while still
marking it uncacheable downstream.

3

One way to effect this is to separate the coherence
mechanisms between origin servers and surrogates
from normal cache coherence. This allows surrogate
caches to operate efficiently, while different coherence
information is available for non−surrogate caches
downstream. It also introduces the possibility of using
enhanced coherence mechanisms between the origin
server and surrogate.

One possible implementation is the use of surrogate−
specific response headers which complement Cache−
Control headers. For example, a response containing:

Surrogate−Control: max−age:600
Cache−Control: max−age:300

would instruct the surrogate to assign a 600 second
freshness to the object, while downstream caches
would keep it fresh for 300.

It is also advantageous to give content publishers the
ability to manipulate the consistency of objects already
in cache (e.g., marking them stale, or purging them
from cache). This is possible because the identity of
surrogates are typically known, and their numbers
limited, unlike caches in proxies or user agents.

Such a consistency model gives content publishers the
ability to directly and precisely control surrogate
coherence. Under such levels of control, it is possible
to consider responses from a surrogate (including
cached responses) as authoritative.

3.3 Redefining the Connection

End−to−end headers in the HTTP are terminated at the
client and origin server. Because a surrogate is not
semantically transparent, it is necessary to evaluate
end−to−end headers to ensure that their intent in the
protocol is preserved.

It is useful to consider surrogates as the endpoint for
some end−to−end headers for both upstream servers
and downstream connections, because of the different
context they operate in. In particular, a surrogate role
may require rethinking the concepts surrounding
identity. For example, surrogates may represent
themselves in the Server header sent to clients, rather
than forwarding it from the master origin server. The
Host request header should also be modified to reflect
the identity of the master origin server, rather than the
surrogate.

Because the surrogate is addressed in the URI used to
contact it, SSL connections cannot be tunneled through
it to the master, as would happen with a proxy. Instead,
separate certificates must be maintained for surrogates
and master origin servers.

Separating the connection at the surrogate also allows
different transports and features to be used on the
upstream and downstream connections. For instance, it
may be desirable to fetch object from the master origin
server while protected by SSL (for authentication and
security of the surrogate/master relationship), while
doing so is not necessary for connections with clients.

Surrogates can also be used to add protocol features not
found on the master origin server, whether they are
hop−by−hop or end−to−end. For example, surrogates
may be used to add Transfer−Encoding capabilities,
add synthetic validators or other cacheability−
enhancing information, and transcode content
depending on client capabilities or other external
criteria.

3.4 Relationships with Other Intermediates

Generally, a surrogate has similar relationships to that
of a proxy; it acts as a client to upstream servers, and a
server to downstream clients (although the nature of
this interface is different, as previously noted).

However, a surrogate’s relationship with its master
origin server requires special consideration. Because
semantic transparency is not necessarily maintained by
surrogates, there may be complications if they are
deployed in a hierarchy as children or parents of other
surrogates.

3.5 Request−URI Modification

Some implementations may modify (rewrite) the
Request−URI, in order to extract configuration
information, or to enforce their configuration in respect
to master origin server load balancing, transcoding, or
other special considerations.

This introduces the need for a terminology that
identifies the Request−URI before and after it has been
modified. Suggested terms are:

� Published−Request−URI − the Request−URI before
modification; that published for referencing by
clients.

� Origin−Request−URI − the modified Request−URI,
used to locate the requested object on the master
origin server.

4 Observed Issues in Current
Implementations

Several issues have been observed when proxy/cache
software has been used as the basis for a surrogate.
Many stem from the issues raised above, and should be
addressed by a surrogate framework specification.

4

4.1 Date Headers and Age Calculation

In HTTP/1.1[2] The Date response header is required
to reflect the time that an object is generated on its
origin server. Caches are directed not to modify an
object’s Date header if one is present. Additionally,
they are required to include an Age header;

The age of a response is the time since it was sent
by, or successfully validated with, the origin server.

This aging mechanism is designed to assure that the
response is kept coherent with the origin server, no
matter how many caches it has traveled through.

If coherence between the surrogate and master is
separate from other cache coherence, surrogates may
wish to represent themselves as authoritative for those
objects, by removing the Age header and updating the
Date to reflect the current time. Doing so allows the
standard HTTP coherence mechanisms to operate as
intended.

Failing to update the Date header and remove the age
can affect downstream cacheability, so that it is not
predictable.

4.1.1 Misinterpretation of Cache−Control: max−
age

HTTP/1.1 states that the age of an object in a cache can
be calculated as:

apparent_age = max(0, response_time − date_value)
resident_time = now − response_time
current_age = apparent_age + resident_time

(this is somewhat simplified; see the specification[2]
for the full algorithm).

If date_value reflects the time that an object first
entered a surrogate, rather than the time that the
surrogate serves the object to its client, apparent_age
may be unnaturally large, depending on how long is
has been resident on the surrogate.

This has the effect of artificially inflating the value of
current_age, causing the object to become prematurely
stale.

For example, imagine an object that enters the
surrogate at an imaginary time, 1200, is accessed by a
downstream cache at time 1500. If the object has a
max−age of 600, and the downstream cache needs to
make a decision about its freshness at time 2000, the
calculation is:

apparent_age = max(0, 1500 − 1200) = 300
resident_time = 2000 − 1500 = 500
current_age = 300 + 500 = 800

In this case, the calculated age (800) exceeds the
specified max−age (600) by 200, causing it to be
considered stale.

This is undesirable, because the surrogate holds
authoritative instances of objects for the master origin
server. If the Date header is current when objects are
served from the surrogate, the calculation becomes:

apparent_age = max(0, 1500 − 1500) = 0
resident_time = 2000 − 1500 = 500
current_age = 0 + 500 = 500

In this case, the calculated age (500) is within the
freshness lifetime of the object (600).

4.1.2 Miscalculation of heur istic freshness

In a similar manner, objects without explicit freshness
information may be adversely affected by a surrogate
which does not update Date headers.

The HTTP allows caches to apply a heuristic freshness
mechanism to such objects. The most common is
expressed[17]:

cache_age = now − date_value
lm_age = date_value − lm_value
lm_factor = cache_age / lm_age

where lm_factor is compared to some configured value
to determine the freshness of the object.

In this case, propagating the original Date header has
greater potential to skew downstream object freshness.
Imagining that the object was last modified at 1000;

cache_age = 2000 − 1200 = 800
lm_age = 1200 − 1000 = 200
lm_factor = 800 / 200 = 4

If the Date header is updated, however,

cache_age = 2000 − 1500 = 500
lm_age = 1500 − 1000 = 500
lm_factor = 500 / 500 = 1

The effects of using a cached Date header upon
heuristic freshness are unpredictable, as they are highly
dependent on the time that the object first entered the
cache.

4.1.3 Interpretation of Expires as a delta, rather
than absolute time

Expires headers allow content publishers to specify a
time when the object will be considered stale.
HTTP/1.1 calculates the freshness lifetime of an object
with an Expires header as:

freshness_lifetime = expires_value − date_value

5

Because of this, if a surrogate does not update an
Expires header, downstream caches will treat the object
as fresh for the period of time between the Expires and
Date headers, rather than expiring it at the specified
time.

If a Cache−Control: max−age response directive is set,
origin servers may set a complimentary Expires: value,
to duplicate the intended freshness delta for HTTP/1.0
clients. To accommodate this, surrogates that update
Date headers should recalculate the Expires header to
match the delta communicated in Cache−Control:
max−age, but only if both are present in a response,
and are equivalent.

It has also been noted that some older Web servers set
an Expires header based on a delta from the Date,
without setting a Cache−Control: max−age header.
This is problematic, as it is difficult to distinguish these
responses from those which wish to expire content at
an absolute date.

Cacheable responses which include a Set−Cookie
header with its own specified expiry will be similarly
affected.

4.2 Proxy−Specific Directives

There are several directives and mechanisms in
HTTP/1.1 that have special meaning to proxies;

� CONNECT method − is reserved for establishment
of a tunnel through a proxy, and is not applicable to
surrogates.

� TRACE method − allows remote loop−back of the
request. Surrogates that allow TRACE through
them may inadvertently expose the master origin
server and communications between it and the
surrogate.

� Cache−Control request headers − allow clients to
specify how a proxy should handle the request. For
surrogates, this may not be advisable in all
situations, and is not necessary because of the tight
binding between the surrogate and its master.

� Pragma request headers − similar to Cache−Control
request headers, Pragma allows clients to control
request handling by proxies.

� Proxy−Authenticate and Proxy−Authorization −
these headers (response and request, respectively)
have little meaning to a surrogate, as they are
designed to limit use of a shared proxy/cache.

4.3 Client Authentication

HTTP client authentication (through use of WWW−
Authenticate and Authorization headers, as well as 401
status codes) may be effectively propagated through a
surrogate, by considering such objects public, and
enforcing validation upon them, to assure proper
authentication.

Delivery may be further optimized by caching the
authentication state of clients on the surrogate, to allow
it to serve objects from cache without revalidation on
the master origin server.

4.4 Content Negotiation

Surrogates have a unique opportunity to serve object
variants based on request attributes. This can be
accomplished by creating variants based on
configuration information, or by rewriting requests to
the origin server based on request attributes. This
effectively moves the variant mapping from the origin
server to the surrogate.

4.5 Redirect Resolution

Proxies are required to forward redirects (301, 302 and
307 status codes), just as any other status code from the
origin server.

Because redirects are used for a variety of purposes,
including relocation of resources, primitive content
negotiation, and other specialized applications, proxies
cannot derive the proper behavior to exhibit, and must
forward the redirect to the client, despite the strong
possibility that the result is cacheable.

Surrogates, on the other hand, are not necessarily
bound by this requirement. Configuration can be used
to identify certain classes of redirection so that only the
resulting object is served to the client, in turn offering a
substantial gain in efficiency.

It may be productive for future work to define
appropriate configuration directives and associated
behaviors to more effectively describe redirect
handling in surrogates.

4.6 Content Integr ity and Secur ity

Because a surrogate serves objects authoritatively,
content integrity may be perceived as more critical
than in a proxy/cache. As a result, surrogates should
support HTTP integrity mechanisms such as the
Content−MD5 response header, and may need to
develop external mechanisms for assuring integrity.
Proper behavior when an integrity error is detected also
needs to be considered.

6

In some cases, a third−party proxy/cache deployed
between a surrogate and its master origin server may
distort the relationship between them. Surrogates may
need to take measures such as appending Cache−
Control and Pragma headers when making requests to
the master origin server, in order to assure that the
correct response is retrieved.

For some applications, it may be desirable to force
clients to use a surrogate, and disallow direct access to
the master origin server. This may be accomplished by
any of a number of mechanisms, including

� Client−side SSL certificates
� HTTP authentication into a surrogate−specific

authentication realm
� A surrogate−specific Cookie as an identifier

4.7 Logging

Proxy−specific log formats may not be appropriate for
use by a surrogate.

Logs on Web servers are used for many purposes, and
content publishers often design their sites to maximize
available information in origin server logs by
modifying the cacheability of resources and logging
identifiers such as cookies, referrers and user agents.

Surrogates should be capable of logging such
information, in a manner compatible with common
origin server logs, to enable such functions to be
moved to the surrogate, rather than forcing requests to
be made back to the origin server for these reasons.

Another issue sometimes faced is what to log as the
Request−URI; if a surrogate modifies it, there may be
some situations where it is desirable to log the original
Request−URI, and others where the Request−URI to
the master origin server is needed.

5 Conclusions and Future Work

There are many issues, both obvious and subtle, caused
by the use of proxy software as a surrogate origin
server. These are amplified by the lack of a framework
or specifications for them. As surrogates lend
themselves to being deployed for high−traffic sites, the
potential for problems with them and opportunities for
extending their functionality and efficiency are
considerable.

This paper establishes talking points that will help start
discussion of the issues identified, in order to bring
these benefits about and help avoid problems
identified. Further work may include establishment of a
role and more specific research into the behaviors of
surrogates.

6 Acknowledgments

The author would like to thank John Dilley, Peter
Danzig, Ted Hardie, Edith Cohen and Roy Fielding for
their contributions and comments.

7 References

(1) Cooper, I., Melve, I. and G. Tomlinson, "Internet
Web Replication and Caching Taxonomy", draft−
ietf−wrec−taxonomy− 03, March 2000.

(2) Fielding, R., Gettys, J., Mogul, J. C., Frystyk, H.,
Masinter, L., Leach, P. and T. Berners−Lee,
"Hypertext Transfer Protocol − HTTP/1.1", RFC
2616, June 1999.

(3) Berners−Lee, T., Fielding, R.T. and L. Masinter,
"Uniform Resource Identifiers (URI): Generic
Syntax", RFC 2396, August 1998.

(4) http://www.wrec.org/
(5) http://www.inktomi.com/
(6) http://www.netcache.com/
(7) http://www.digisle.com/
(8) http://www.novell.com/
(9) http://www.squid−cache.org/
(10)http://www.akamai.com/
(11)http://workshop.ircache.net/BOFs/bof2.html
(12)surrogates@equinix.com (subscribe: surrogates−

request@equinix.com)
(13)http://www.arrowpoint.com/switch/white_papers/

cache_switching.html
(14)http://www.novell.com/bordermanager/accel.html
(15)Karger, D., Sherman, A., Berkheimer, A., Bogstad,

B., Dhanidina, R., Iwamoto, K., Kim, B., Matkins,
L., and Yerushalmi, Y. "Web Caching with
Consistent Hashing", Proceedings of the 8th
International World Wide Web Conference, May
1999. http://www8.org/w8−papers/2a−webserver/
caching/paper2.html

(16)Levy−Abegnoli, E., Iyengar, A., Song, J., and
Dias, D. "Design and Performance of a Web Server
Accelerator", Proceedings of the IEEE Infocom ’99
Conference, March 1999.
http://www.research.ibm.com/people/i/iyengar/
infocom1.ps

(17)D. Wessels et. al., Release Notes for Version 1.1 of
the Squid Cache. July 1997.

8 Vitae

Mark Nottingham is a Senior Developer at Akamai
Technologies. There, he helps specify the behavior
Akamai servers should exhibit when interacting with
the HTTP, as well as defining an interface for Akamai
server configuration.

7

