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As the 19th century drew to a close, logicians formalized an ideal notion of proof. They were driven
by nothing other than an abiding interest in truth, and their proofs were as ethereal as the mind of God.
Yet within decades these mathematical abstractions were realized by the hand of man, in the digital
stored-program computer. How it came to be recognized that proofs and programs are the same thing is
a story that spans a century, a chase with as many twists and turns as a thriller. At the end of the story
is a new principle for designing programming languages that will guide computers into the 21st century.

For my money, Gentzen’s natural deduction and Church’s lambda calculus are on a par with Einstein’s
relativity and Dirac’s quantum physics for elegance and insight. And the maths are a lot simpler. I want
to show you the essence of these ideas. I’ll need a few symbols, but not too many, and I’ll explain as I go
along.

To simplify, I’ll present the story as we understand it now, with some asides to fill in the history.
First, I’ll introduce Gentzen’s natural deduction, a formalism for proofs. Next, I’ll introduce Church’s
lambda calculus, a formalism for programs. Then I’ll explain why proofs and programs are really the
same thing, and how simplifying a proof corresponds to executing a program. Finally, I’ll conclude with
a look at how these principles are being applied to design a new generation of programming languages,
particularly mobile code for the Internet.

1 Gentzen’s natural deduction

Aristotle formulated his syllogisms in antiquity, and William of Ockham studied logic in the middle ages.
But the discipline of modern logic began with Gottlob Frege’s Begriffschrift, written in 1879 when Frege
was 31.

Ancient logicians attached the name modus ponens to a fundamental modes of reasoning: from the
premise B implies A, and from the premise B, you may draw the conclusion A. For example, let A be
the proposition ‘we are in Belgium’ and B be the proposition ‘today is Tuesday’. Given that ‘if today is
Tuesday then we are in Belgium’ and that ‘today is Tuesday’, you may conclude that ‘we are in Belgium’.

Here is how Frege formalized the rule of modus ponens.

This figure consists of three judgements. Each judgement is indicated by a vertical stroke at the left,
indicating that what follows is asserted to be true. There are two judgements above the horizontal
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Figure 1: An extract from Frege’s Begriffschrift, 1879

line, called the premises, and one below, called the conclusion. Frege used a hook shape to indicate
implication. The first premise asserts B implies A in Frege’s notation, the second premise asserts B, and
the conclusion asserts A. Starting from this simple principle, Frege formulated a complex and powerful
notation, a sample of which is shown in Figure ??.

Frege’s work became the starting point for numerous new formulations of logic. These abandoned his
use of pictures, and instead wrote B → A for B implies A and wrote ` A for the judgement that asserts
A (the ` symbol evolved from the stroke Frege wrote to the left of his judgements). In the new notation,
modus ponens was written like this.

` B → A ` B

` A
In addition to modus ponens, these systems required some axioms like the following.

` A→ A (1)
` A→ (B → A) (2)

` (A→ (B → C))→ ((A→ B)→ (A→ C)) (3)

As with modus ponens, you can substitute any proposition you want in place of A, B, and C. The first
axiom asserts A implies A, which means if we know A then we can conclude A, which seems clear enough.
The second asserts A implies (B implies A), which means if you know A and you know B then you can
still conclude A, which lets you ignore irrelevant facts. The third is more complex, and I’ll leave it for
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Id
A ` A

Γ, B ` A
→-I

Γ ` B → A

Γ ` B → A ∆ ` B
→-E

Γ, ∆ ` A

Γ ` A ∆ ` B
∧-I

Γ, ∆ ` A ∧B
Γ ` A ∧B

∧-E1
Γ ` A

Γ ` A ∧B
∧-E2

Γ ` B

Figure 2: Gentzen’s natural deduction

the more motivated reader to puzzle out. But, remarkably, from modus ponens and the second and third
axioms one can derive every truth about implication, including the first axiom.

In addition to A implies B, written A→ B, logicians considered other logical connectives, such as A
and B written A ∧B, and A or B written A ∨B, and not A written ¬A. For example, (A ∧B)→ A is
read A and B implies A, which is another way to say that if you know A and you know B, then you can
still conclude A. There are also quantifiers, such as for all written ∀. For example,

∀x.∀y.∀z. (x < y ∧ y < z)→ x < z

is read ‘for all x, y, and z, if x is less than y and y is less than z then x is less than z’. In what follows,
I’ll just consider → and ∧ and ignore the other logical connectives and the quantifiers.

One might hope for a logic of implication based on something more natural than the three axioms
above, especially the daunting axiom (3). This was the goal of Gerhard Gentzen’s natural deduction,
introduced in 1934 when Gentzen was 25.

Gentzen generalized Frege’s notion of judgement to include assumptions. Whereas Frege’s judgements
(after the notation evolved) look like ` A, meaning assert that A is true, Gentzen’s judgements look look
like this

B1, . . . , Bn ` A

meaning assert that A is true on the assumption that B1and . . . andBn are all true. The list of assumptions
B1, . . . , Bn may be empty, or contain just one proposition, or contain many. The case where it is empty
corresponds to Frege’s notion of judgement.

Following tradition, we use the greek letters Γ and ∆ to stand for lists of propositions, just as we use
A, B, C to stand for single propositions. (They are pronounced gamma and delta.) Order in the lists is
immaterial. We form the union of two lists by writing Γ,∆, and this also removes any duplicates from
the list.

Here is modus ponens in Gentzen’s system.

Γ ` B → A ∆ ` B

Γ, ∆ ` A

The rule again has two premises. The first premise asserts that B implies A holds under assumptions
Γ, the second premise asserts that B holds under assumptions ∆, and the conclusion asserts that A
holds under the combined assumptions Γ and ∆. For example, let Γ be the assumption ‘we are on
the whirlwind tour’ and ∆ be the assumption ‘yesterday was Monday’, and take A and B as before.
Given that ‘assuming we are on the whirlwind tour, if today is Tuesday then we are in Belgium’ and
that ‘assuming yesterday was Monday, today is Tuesday’, you may conclude ‘assuming we are on the
whirlwind tour and yesterday was Monday, we are in Belgium’.

Some rules of Gentzen’s natural deduction are shown in Figure ??. Gentzen’s system includes two
sorts of rules, structural rules and logical rules. The figure has one structural rule, Id, and logical rules
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Id
{B ∧A} ` B ∧A

∧-E2
{B ∧A} ` A

Id
{B ∧A} ` B ∧A

∧-E1
{B ∧A} ` B

∧-I
{B ∧A} ` A ∧B

→-I
{} ` (B ∧A)→ (A ∧B)

Id
{B} ` B

Id
{A} ` A

∧-I
{A, B} ` B ∧A

→-E
{A, B} ` A ∧B

Figure 3: A roundabout proof

for the connectives → (implies) and ∧ (and). Each logical rule is classified as an introduction rule if the
connective appears in the conclusion but not the premises, and as an elimination rule if the connective
appears in a premise but not in the conclusion. Thus, in the →-I rule, → appears in the conclusion, and
in the →-E rule, → appears in the first premise.

Rule Id states that from assumption A one can deduce A, a tautology if ever there was one. Rule
→-I states that if from assumptions Γ and B one can deduce A, then from assumptions Γ alone one can
deduce that B implies A. Rule→-E is our friend modus ponens. Rule ∧-I states that if from assumptions
Γ one can deduce A and from assumptions ∆ one can deduce B, then from combined assumptions Γ and
∆ one can deduce both A and B. Rule ∧-E1 states that if from assumptions Γ one can deduce A and B,
then from the same assumptions one can deduce just A, and similarly for ∧-E2 and B.

At first glance, these rules may seem confusing, since ‘if-then’ appears in three different forms (→
for propositions, ` for judgements, and the premises and conclusion of inference rules). The genius
of Gentzen was to see that adding such bookkeeping simplified the final system — the rules exhibit a
pretty symmetry, and no strange beasts like axiom (3) are required. Further, as we shall see, Gentzen’s
method of bookkeeping meshes perfectly with viewing proofs as programs, a view not discovered until
three decades later.

A small proof built from these rules appears in Figure ??. The proof demonstrates a trivial fact,
that from assumptions A and B one can deduce A ∧ B. But it does so in a roundabout way: it first
demonstrates that from no assumptions one can deduce (B∧A)→ (A∧B), and that from the assumptions
A and B one can deduce B ∧A, and then applies modus ponens. One might reasonably expect that such
a proof could be simplified.

A major contribution of Gentzen’s 1934 paper was the subformula property : he showed that any proof
of a statement Γ ` A can be simplified so that the only propositions it mentions are those in Γ, and A,
and any parts (subformulas) of these. Any diversions (like using B ∧A to prove A∧B) can be simplified
away. Simplified proofs were much easier to reason about, and Gentzen used the subformula property to
demonstrate a number of key properties, including the consistency of his logic.

Gentzen’s 1934 paper actually introduced two ways of formulating logic, natural deduction and sequent
calculus. What I’ve shown here is essentially natural deduction, though it borrows some of its form (such
as the use of `) from sequent calculus. Gentzen preferred natural deduction, but could only prove the
subformula property for the sequent calculus. A way to simplify natural deduction proofs directly was
eventually discovered, but as we shall see, this took some time.

Ironically, the key to simplifying natural deduction proofs had already appeared in print. Church’s first
paper on lambda calculus was published in 1932, two years before Gentzen’s paper on natural deduction.
As we will see, the two works are in remarkably close correspondence, though they were developed for
different reasons entirely.
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2 Church’s lambda calculus

Alonzo Church introduced lambda calculus in 1932 as part of a new formulation of logic. That formulation
turned out to be flawed, but Church suspected that lambda calculus might have independent interest. In
that first paper he wrote ‘There may, indeed, be other applications of the system than its use as a logic.’
Prophetic words!

By 1936, Church had realized that lambda terms could be used to express every function that could
ever be computed by a machine. Independently, at about the same time, Turing wrote the famous paper
on the machine that bears his name. It was quickly recognized that the two formulations were equivalent,
and Turing came to Princeton to study with Church between 1936 and 1938.

Shortly thereafter Turing returned to Britain. During the war, At Bletchley Park he worked on
machines — early proto-computers — designed to break enemy codes. (Had he not succeeded, you and
I might be speaking German.) And within a decade, John von Neumann, who was at Princeton and
familiar with the work of Church and Turing, wrote his famous note on the architecture of the stored
program computer.

Church reduced all calculation to the notion of substitution. Typically, a mathematician might define
a function by an equation. If a function f is defined by the equation f(x) = t, where t is some term
involving x, then the application f(u) yields the value t[u/x], where t[u/x] is the term that results by
substituting u for each occurrence of x in t. For example, if f(x) = x× x then f(3) = 3× 3 = 9.

Church provided an especially compact way of writing such functions. Instead of saying ‘the function
f where f(x) = t’, he simply wrote λx. t. In his notation, our example function is written λx. x× x. The
essence of calculation is described by the following reduction rule:

(λx. t)(u) ⇒ t[u/x]

For example, (λx. x× x)(3)⇒ 3× 3⇒ 9. We use ⇒ (pronounced reduces to) rather than = to indicate
the direction in which terms become simpler. A term of the form λx. t is called a lambda abstraction, and
a term of the form t(u) is called an application.

When there is more than one reduction to be performed, it does not matter which you do first.
Consider the following, where the incrementing function λy. y + 1 is applied to 2, and then the squaring
function λx. x× x is applied to that result.

(λx. x× x)((λy. y + 1)(2))
↙ ↘

(λx. x× x)(2 + 1) ((λy. y + 1)(2))× ((λy. y + 1)(2))
↘ ↙

(2 + 1)× (2 + 1)

Here the path on the left first reduces the increment (substituting for y), while the path on the right
first reduces the square (substituting for x). The path on the right duplicates some work (it must reduce
(λy. y+ 1)(2) twice), but it gets to the same answer in the end, namely 9. That the order of reductions is
immaterial makes it much easier to manipulate lambda terms. This key result is called the Church-Rosser
theorem.

What about functions of more than one argument? Church used an ingenious idea due to Frege: a
function of two arguments can be represented by a function of the first argument that returns a function
of the second argument. For instance, the function g(x, y) = x × x + y × y is represented in lambda
calculus as λx. λy. x× x+ y × y. Corresponding to the computation g(3, 4) = 3× 3 + 4× 4 = 25 one has
the following reduction sequence, which first substitutes for x and then substitutes for y.

((λx. λy. x× x+ y × y)(3))(4)
⇒ (λy. 3× 3 + y × y)(4)
⇒ 3× 3 + 4× 4
⇒ 25
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This trick was eventually christened currying after another logician, Haskell Curry.
The clever thing in Church’s formulation is that a function can take a function as its argument, or

return a function as its result. For example, the composition of two functions is denoted by the lambda
term

λf. λg. λz. g(f(z))

This takes two functions (f and g) as arguments, then returns a function that takes an argument (z),
applies the first function to its argument, and then applies the second function to that result. Here is an
example where composition is applied to the increment and squaring functions, and the resulting function
is applied to the number 2.

(λf. λg. λz. g(f(z)))(λy. y + 1)(λx. x× x)(2)
⇒ (λg. λz. g((λy. y + 1)(z)))(λx. x× x)(2)
⇒ (λz. (λx. x× x)((λy. y + 1)(z)))(2)
⇒ (λx. x× x)((λy. y + 1)(2))
⇒ (2 + 1)× (2 + 1)
⇒ 9

After two steps, substituting for f and g, this reduces to the term we saw earlier, which increments 2
and then squares the result.

The above examples made use of numbers and arithmetic, assuming extra reduction rules like 3×3⇒ 9.
One might also extend lambda calculus with data structures. For instance, we might add the term 〈t, u〉
to build a pair, and the terms p.fst and p.snd to select the first and second fields from a pair, together
with the reduction rules

〈t, u〉.fst ⇒ t
〈t, u〉.snd ⇒ u

For example, here’s a lambda term that swaps the elements of a pair.

λz. 〈z.snd, z.fst〉

We can apply this to the pair 〈y, x〉.

(λz. 〈z.snd, z.fst〉)(〈y, x〉)
⇒ 〈〈y, x〉.snd, 〈y, x〉.fst〉
⇒ 〈x, y〉

First the lambda reduction rule substitutes for the argument, then the pair reduction rules select out the
fields. We’ll make use of pairs in what follows.

The remarkable thing about the lambda calculus is that these extensions are unnecessary. Church
hit on the clever idea of representing a number by a function that takes a function as argument and
applies that function the given number of times. Thus, n is represented by λf. λx. f(· · · f(x)), where f is
repeated n times. In effect, the number n is represented by a ‘for’ loop that applies any given function n
times. Church then showed how to define arithmetic operations as yet other lambda terms. Addition and
multiplication are pretty easy — they look a lot like function composition — but subtraction turned out
to be quite devious. Booleans, pairs, and other structures can be represented by tricks similar to those
used to represent numbers. Even recursive functions can be represented, by means of a cunning device.

It was in this way that Church showed that any function on numbers computable by a machine could
be represented by a lambda term, built using only lambda abstraction (λx. t), function application (t(u)),
and variables (x), plus the notion of reduction ((λx. t)(u)⇒ t[u/x]). Just as the physical universe appears
to be built from a small number of fundamental particles and forces, the computing universe can be built
from just three term forms and one reduction rule.
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Id
x : A ` x : A

Γ, x : B ` t : A
→-I

Γ ` λx. t : B → A

Γ ` t : B → A ∆ ` u : B
→-E

Γ, ∆ ` t(u) : A

Γ ` t : A ∆ ` u : B
∧-I

Γ, ∆ ` 〈t, u〉 : A ∧B
Γ ` t : A ∧B

∧-E1
Γ ` t.fst : A

Γ ` t : A ∧B
∧-E2

Γ ` t.snd : B

Figure 4: Church’s typed lambda calculus

3 Typed lambda calculus

Church introduced a typed version of lambda calculus in 1940. His goal was to avoid paradoxes that beset
other logics (including Frege’s original logic, which fell prey to Russel’s paradox). Just as lambda calculus
had applications beyond what Church first intended, so too did types. Type systems in languages like
Algol and Pascal can catch many programming errors, and the typed lambda calculus plays the same
role for functional programming languages.

We write A → B for the type of a function from an argument of type A to a result of type B, and
A ∧ B for the type of a pair where the first component has type A and the second component has type
B.

A typing judgement has the form

x1 : B1, . . . xn : Bn ` t : A

meaning term t has type A on the assumption that variable x1 has type B1 and . . . variable xn has type
Bn, where x1 and . . . and xn are the free variables of term t.

We now use the greek letter Γ and ∆ to stand for lists of variable-type pairs, x : B. As before, order
in the lists is immaterial. We form the union of two lists by writing Γ, ∆; if a variable x appears in both
Γ and ∆ then it must be given the same type in both, and the union removes the duplication.

Here is the rule of function application in Church’s system.

Γ ` t : B → A ∆ ` u : B

Γ, ∆ ` t(u) : A

The rule again two premises. The first premise asserts that t is a function from type B to type A, under
type assumptions Γ, the second premise asserts that u is a term of type B under type assumptions ∆,
and the conclusion asserts that t(u) is a term of type A under the combined typing assumptions Γ and
∆. Note that the free variables of t(u) are those of t unioned with those of u.

The rules of Church’s typed lambda calculus are shown in Figure ??. There is one rule for terms that
are variables. The other rules are grouped by whether they act on function or pair types (→ or ∧), and
by whether the rule introduces or eliminates a value of that type (I or E). Lambda abstraction introduces
a function, while application eliminates it; and a pair constructor introduces a pair, while a field selector
eliminates it.

Rule Id states that from the assumption that x is of type A, one can deduce that x is of type A,
an obvious tautology. Rule →-I states that if under the assumption that variable x has type B one can
deduce that term t has type A, then one can deduce that the lambda abstraction λx. t is a function from
type A to type B. The free variables of t are those in Γ together with x; while the free variables of λx. t
are those in Γ alone, since the variable x is considered bound by the lambda abstraction. Rule →-E is
our old friend, function application. Rule ∧-I states that if term t has type A and term u has type B,
then the constructor 〈t, u〉 yields a pair of type A ∧ B. Again, the free variables of 〈t, u〉 are those of t
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Γ ∪ {x : B} ` t : A
→-I

Γ ` λx. t : B → A ∆ ` u : B
→-E ⇒ Γ ∪∆ ` t[u/x] : A

Γ ∪∆ ` (λx. t)(u) : A

Γ ` t : A ∆ ` u : B
∧-I

Γ ∪∆ ` 〈t, u〉 : A ∧B
∧-E1 ⇒ Γ ` t : A

Γ ∪∆ ` 〈t, u〉.fst : A

Γ ` t : A ∆ ` u : B
∧-I

Γ ∪∆ ` 〈t, u〉 : A ∧B
∧-E2 ⇒ ∆ ` u : B

Γ ∪∆ ` 〈t, u〉.snd : B

Figure 5: Reductions preserve type derivations

combined with those of u. Rule ∧-E1 states that if t is a pair of type A∧B, then the selector t.fst yields
the first field of the pair which has type A. The free variables of t.fst are the same as those of t. Similarly
for ∧-E2.

There is one rule for each term form, so given a term and the types of its variables (free and bound)
the corresponding type derivation is uniquely determined, and vice versa.

How do reductions affect the type of a term? It is easy to see that they leave the type unchanged, as
illustrated in Figure ??. Consider the reduction

(λx. t)(u) ⇒ t[u/x]

Given a type derivation for the left side it is easy to construct a derivation for the right side, as follows.
The type derivation ending in Γ ∪ {x : B} ` t : A will have one leaf of the form {x : B} ` x : B for each
occurrence of x in t. If each x in t is replaced by u, then each such leaf is replaced by the derivation
∆ ` u : B, giving a derivation for Γ ∪∆ ` t[u/x] : A, as required. Now consider the reductions for pairs.

〈t, u〉.fst ⇒ t
〈t, u〉.snd ⇒ u

Given type derivations for the left sides it is trivial to construct derivations for the right sides, since a
derivation for 〈t, u〉 directly includes derivations for t and u.

In each of the three reduction rules, the derivation on the left consists of an introduction for a type
followed by an elimination for the same type. The reduction rule for functions applies when a lambda
term introduces a function, which is immediately eliminated by an application; and the reduction rules
for pairs apply when a constructor introduces a pair, which is immediately eliminated by a selector.
Whenever an introduction rule meets the corresponding elimination rule the two cancel out, like matter
meeting anti-matter.

For example, recall the following sequence of reductions.

(λz. 〈z.snd, z.fst〉)(〈y, x〉)
⇒ 〈〈y, x〉.snd, 〈y, x〉.fst〉
⇒ 〈x, y〉

Figure ?? shows the corresponding type derivations for this sequence. First the adjacent function intro-
duction and elimination cancel out, and each leaf {z : B ∧ A} ` z : B × A is replaced by the derivation
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Id
{z : B ∧A} ` z : B ∧A

∧-E2
{z : B ∧A} ` z.snd : A

Id
{z : B ∧A} ` z : B ∧A

∧-E1
{z : B ∧A} ` z.fst : B

∧-I
{z : B ∧A} ` 〈z.snd, z.fst〉 : A ∧B

→-I
{} ` λz. 〈z.snd, z.fst〉 : (B ∧A)→ (A ∧B)

Id
{y : B} ` y : B

Id
{x : A} ` x : A

∧-I
{x : A, y : B} ` 〈y, x〉 : B ∧A

→-E
{x : A, y : B} ` (λz. 〈z.snd, z.fst〉)(〈y, x〉) : A ∧B

⇓

Id
{y : B} ` y : B

Id
{x : A} ` x : A

∧-I
{x : A, y : B} ` 〈y, x〉 : B ∧A

∧-E2
{x : A, y : B} ` 〈y, x〉.snd : A

Id
{y : B} ` y : B

Id
{x : A} ` x : A

∧-I
{x : A, y : B} ` 〈y, x〉 : B ∧A

∧-E1
{x : A, y : B} ` 〈y, x〉.fst : B

∧-I
{x : A, y : B} ` 〈〈y, x〉.snd, 〈y, x〉.fst〉 : A ∧B

⇓

Id
{x : A} ` x : A

Id
{y : B} ` y : B

∧-I
{x : A, y : B} ` 〈x, y〉 : A ∧B

Figure 6: A reduction sequence with type derivations

for {x : A, y : B} ` 〈y, x〉 : B × A. This in turn brings the two pair introductions next to the two pair
eliminations, and these cancel out leaving the final simplified term.

There is a subtle and surprising consequence of this argument. The reduction for pairs always makes
the derivation tree smaller. The reduction for functions may make the derivation larger, since it removes
the subtree λx. t, but may copy the subtree u many times. However, the subtree λx. t has type B → A,
while the subtree u has type B, so although there are more subtrees their types are simpler. A moment’s
thought will show that the types cannot keep getting simpler forever, so reduction of typed lambda terms
must always terminate. Computer scientists are used to the idea that the halting problem is unsolvable,
but typed lambda calculus provides a rich language for which the halting problem is trivially solved.

The flip side of this is that typed lambda calculus must be limited in its expressiveness. In particular, it
cannot express recursion. One can add a new term and typing rule for recursion, restoring expressiveness
at the cost of losing termination. You pay your money, and you take your choice.

Many type systems have been based on the principles sketched here, including sum types, record types,
abstract types, polymorphic types, recursive types, subtype inclusion, object-oriented types, module
types, type classes, kinded types, monad types, and linear types. In all these systems, types provide
a guide to the design: start from the types, and the terms and reductions follow. The terms follow
as introducers and eliminators for the type, and the reductions follow when an introducer meets an
eliminator, and type safety follows by showing that each of the reduction rules preserves type derivations.
Types have proven to be one of the most powerful organizing principles for programming languages.

9



4 The Curry-Howard correspondence

By now, you may have noticed that if you ignore the red part of Figure ??, showing Church’s typed
lambda calculus, what remains is identical to Figure ??, showing Gentzen’s natural deduction. Given a
type derivation one can easily construct the corresponding proof, and vice versa. And we have already
seen that given a term one can construct the corresponding type derivation, and vice versa. Hence terms
and proofs are in one-to-one correspondence.

Further, term reduction corresponds to proof simplification. We noted earlier that the proof in
Figure ?? was needlessly roundabout. Rather than proving A ∧B directly from A and B, it first proves
(B ∧A)→ (A ∧B) and B ∧A, then uses modus ponens to get the desired result. As we have seen, this
proof corresponds to the term (λz. 〈z.snd, z.fst〉)(〈y, x〉), and the simplification of the proof corresponds
to the reduction sequence shown in Figure ??.

The terms corresponding to proofs have a natural interpretation. The proof of an implication B → A
is a function, which takes a proof of the anteceedent B into a proof of the consequent A. In the →-E
rule, the function that proves B → A is applied to the proof of B to yield a proof of A. Similarly, the
proof of a conjunction A∧B is a pair of proofs, one for the component A and one for the component B.
In the ∧-E1 rule, selection is applied to the pair of proofs A ∧ B to yield a proof of A, and similarly for
the ∧-E2 rule and B.

For simplicity, I’ve only presented a small fragment of Gentzen’s logic and Church’s type system, but
the correspondence extends further. For instance, the logical connective A ∨ B (A or B) corresponds
to a disjoint union type (or variant record) that stores either a value of type A or a value of type B,
and an indication of which. However, one important restriction is that the correspondence works best
for intuitionistic logic, a logic that does not contain the law of the excluded middle, which asserts that
A ∨ ¬A is true for any proposition A.

Though Gentzen’s natural deduction was published in 1934 and Church’s typed lambda calculus was
published in 1940, the path to spotting this correspondence was a long one. Gentzen could only make
proof simplification work for sequent calculus, not natural deduction. In 1956, Dag Prawitz showed how
to simplify natural deduction proofs directly. In that same year, Curry and Feys published the definitive
work on combinators, a sort of simplified variant of lambda expressions. Curry (the man for whom
currying was named) had noted a correspondence between the types of the combinators and the laws of
logic as formulated by Hilbert. Finally, in 1969, W. A. Howard put together the results of Curry and
Prawitz, and wrote down the correspondence between natural deduction and lambda calculus. Thus,
three decades later, it was finally possible to see the work of Gentzen and Church as two sides of the
same coin. By the way, Howard’s work, though widely influential, was circulated only on mimeographed
sheets; it was not published until 1980, in a book honoring Curry on his 80th birthday.

The living proof of the Curry-Howard correspondence is the appearance of other double-barrelled
names in the literature on types. Time and again, a logician motivated by logical concerns and a computer
scientist motivated by practical concerns have discovered exactly the same type system, usually with the
logician getting there first. Most modern functional languages use the Hindley-Milner type system,
discovered by the logician Hindley in 1969 and re-discovered by the computer scientist Milner in 1978.
And much recent work on type-directed compilers is based on the Girard-Reynolds system, discovered
by the logician Girard in 1972 and re-discovered by the computer scientist Reynolds in 1974.

The Curry-Howard correspondence led logicians and computer scientists to develop a cornucopia of
new logics based on the correspondence between proofs and programs. In these systems, rather than write
a program to compute, say, the integer square root function, one would instead prove a corresponding
theorem, such as that for all integers x such that x ≥ 0, there exists a largest integer y such that y2 ≤ x.
One could then extract the integer square root function, which given x returns the corresponding y,
directly from the proof. Early systems of this sort include Automath, developed by the logician de Bruijn
in 1970, and Type Theory, developed by the philosopher Martin Löf in 1982. Later, computer scientists
got into the game, with Nuprl, developed by Constable in 1986, the Calculus of Constructions, developed
by Coquand and Huet in 1988, and the Lambda Cube, developed by Barendregt in 1991.

The story continues to develop until today. For instance, one might wonder whether the Curry-Howard
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correspondence could extend to classical logic (adding back in the law of the excluded middle). Indeed
it can, as shown by Timothy Griffin in 1990. Or one might wonder whether Gentzen’s simplification
result for sequent calculus can be applied to give insight into lambda calculus. Indeed it can, as shown
by Barendregt and Ghilezan last year.

The close fit between Gentzen’s work and Church’s, uncovered three decades after the original papers,
is quite astonishing. Recall that a confusing aspect of Gentzen’s system was that it involved something like
‘if-then’ in three different forms: → for propositions, ` for statements, and the premises and conclusion
of inference rules. In retrospect, it is easy to see why there are three different levels: → corresponds to
types, ` corresponds to free variables and terms, and inference rules correspond to the way terms are
built. Gentzen, by seeking to understand the deep nature of proof, and Church, by seeking to understand
the deep nature of computation, created two systems that were in perfect correspondence.

Church and Curry lived to see their abstract theories have an impact on practical programming
languages. They were guests of honor at the 1982 conference on Lisp and Functional Programming, both
highly bemused by what had been done with their work. (A young graduate student in the throes of
finishing my thesis, I was fortunate enough to attend and meet them both.)

Gentzen was not so fortunate. He did not even survive to see Prawitz’s method of directly simplifying
natural deduction proofs. During the war he took a post at the University of Prague. On 5th May
1945, the citizen’s of Prague revolted against the German forces, and held the city until the arrival of the
Russian Army. Gentzen was sent to prison by the new local authorities. One of his friends wrote of this
time ‘He once confided in me that he was really quite contented since now he had at last time to think
about a consistency proof for analysis.’ But confusion was rife, and the prison conditions were poor. He
died in his cell of malnutrition on 4th August 1945.

5 Conclusions

Church’s lambda calculus, both typed and untyped, had a profound impact on the development of
programming languages. The notion that functions may take functions as arguments and may return
functions as results was particularly important. In the 1960’s, Christopher Strachey proposed this as
a guiding principle for the design of programming languages, under the motto ‘functions as first-class
citizens’.

Lisp used the keyword ‘lambda’ to define functions, but its definition of function differs subtly from
that of lambda calculus. Languages that took more direct inspiration from lambda calculus include
Iswim (Peter Landin, 1966); Scheme, a dialect of Lisp which got ‘lambda’ right (Guy Steele and Gerald
Sussman, 1975); ML, short for ‘metalanguage’ (Milner, Gordon, and Wadsworth, 1979), later succeed by
Standard ML; Miranda (David Turner, 1985); Haskell, named for Haskell Curry (Hudak, Peyton Jones,
Wadler and others, 1987); and O’Caml, a french spin-off of ML (Xavier Leroy and others, 1996).

Iswim and Scheme are untyped, but the other languages have type systems based on the Hindley-
Milner and Girard-Reynolds systems. Standard ML is noted for its exploration of module types, Haskell
for its type classes, and O’Caml for its object-oriented types. Standard ML, Haskell, and O’Caml are
all continuing development, and innovation in their type systems is one of the principle directions of
research.

Applications built on top of functional languages, and which themselves use type systems in innovative
ways, include: Kleisli, a database language for biomedical data (implemented in Standard ML); Ensemble,
a library for building distributed applications and protocol stacks (implemented in O’Caml); Lolita, a
natural language understanding system (implemented in Haskell); and Xduce, a language for processing
XML (implement in O’Caml).

Functional programming and types have also had a significant impact on Java. Guy Steele, one of the
three principle designers of Java, got his start with the functional language Scheme. John Rose, another
Scheme programmer, introduced lambda terms into Java in the form of ‘inner classes’, where they are
used to implement callbacks in the graphic user interface and the event framework. The security model
of Java depends heavily on type safety, spurring much new work in this area, including type systems
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to enhance security. And the next generation of Java may include generic types, based partly on the
Girard-Reynolds type system (see GJ: A Generic Java, Dr Dobbs Journal, February 2000).

Java and Jini provide some support for distributed computing, but it is clear that they are not the
last word. A whole new generation of distributed languages is currently under development, including
Milner’s pi calculus, Cardelli and Gordon’s Ambit, and Fournier and Gonthier and other’s Join calculus,
and Lee and Necula’s proof-carrying code. All of these languages draw heavily on the traditions of typed
lambda calculus.

Theorem provers Hewlett-Packard’s Runway multiprocessor bus underlies the architecture of the HP
9000 line of servers and multiprocessors. Hewlett-Packard applied the HOL (Higher-Order Logic) theorem
prover as part of an effort to verify that caching protocol’s in Runway did not deadlock. This approach
uncovered errors that had not been revealed by several months of simulation.

The Defence Science and Technology Organisation, a branch of the Department of Defence in Aus-
tralia, is applying the Isabelle theorem prover to verify arming conditions for missile decoys. The system
was used to prove, for example, that the missile cannot be armed when the launch safety switch is not
enabled. As a side effect of constructing the proof, some potential errors in the code were spotted.

Both HOL and Isabelle are implemented in Standard ML. Standard ML is a descendant of ML, the
metalanguage of the groundbreaking LCF theorem prover, which is in turn an ancestor of both HOL and
Isabelle. This circle reflects the intertwined history of theorem provers and functional languages. HOL
was developed by Gordon, Melham, and others, with versions released in 1988, 1990, and 1998. Isabelle
was developed by Paulson, Nipkow, and others, with version released in 1993, 1994, 1998, and 1999.

ML/LCF exploited two central features of functional languages, higher-order functions and types. A
proof tactic is a function taking a goal formula to be proved and returning a list of subgoals paired with
a justification. A justification, in turn, is a function from proofs of the subgoals to a proof of the goal. A
tactical is a function that combined small tactics into larger tactics. The type system was a great boon
in managing the resulting nesting of functions that return functions that accept functions. Further, the
type discipline ensured soundness, since the only way to create a value of type Theorem was by applying
a given set of functions, each corresponding to an inference rule. As noted above, the type system Robin
Milner devised for ML remains a cornerstone of work in functional languages. ML/LCF was developed
by Milner, Gordon, and Wadsworth, with the complete description published in 1979.

HOL and Isabelle are just two of the many theorem provers that draw on the ideas developed in
LCF, just as Standard ML is only one of the many languages that draw on the ideas developed in ML.
Among others, Coq is implemented in Caml, Veritas in Miranda, Yarrow in Haskell, and Alf, Elf, and
Lego in Standard ML again. A recent issue of the Journal of Functional Programming was devoted to
the interplay between functional languages and theorem provers.

Proof-carrying code Trust is essential in computing. Almost all of the code you run is not code that
you yourself have written. How can you know it will do what you intend to do, rather than, say, wipe your
hard disk, or e-mail your credit card numbers to a third party? The Internet has brought this problem into
sharper focus, as it increases opportunities for downloading programs while it decreases opportunities to
build trust via social interaction. Computer viruses in programs hidden in e-mail documents have brought
this problem to public attention, but the problem exists for any program you might run on your machine.
Further, not only do you have to trust the programmer not to be malicious, you also have to trust him
or her not to violate the security policy by mistake. Such mistakes are in fact quite common, as many
who have suffered a machine crash can attest.

There are technical means are available to complement the social means of building trust. For instance,
an operating system may allocate permission to read or write files to various accounts. (Unix and NT
support this, Windows 98 does not). One can then arrange for an untrusted program to be given
permission to read or write only a small selection of programs. (Alas, even on systems that can easily
support this, it is not always standard practice to do so.) The policy describing which resources may be
accessed is called a security policy.
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The bedrock of any security policy is limiting the areas of computer memory that a program can read
or write. Once a program overwrites the kernel of the operating system, all bets are off. Even more
simply, many viruses or worms operate by overwriting a return location on the stack, which in turn is
achieved by writing into an array with an index outside the array boundary.

Thus, types can be intimately tied to security. For instance, if a program is passed the address of an
array, the type system can ensure that the program always writes to addresses within the array boundary.
Strongly typed languages like Java or Modula 3 guarantee such properties, weakly typed languages like
C or C++ do not. Java’s popularity as an Internet programming language is based in large part on
the fact that its design addresses these security issues. The foundation of this is that Java byte codes
are verified before they are run — that is, the byte codes form a typed programming language, and the
verifier checks the types.

The simplest way to achieve security is to check each operation each time it is performed, but this
can be expensive. To reduce the cost, you may wish to check once and for all before running the program
that certain operations are guaranteed to be safe every time they are performed — that is, you want to
prove that certain operations always conform to your security policy, and that is exactly what a type
system does. Often, one uses a combination of both approaches.

For example, when Java indexes an array, the top two slots on the stack contain an index and a
pointer to the array. The verifier guarantees that the slot which is supposed to point to an array really
does point to an array (a block of storage containing a length followed by the array contents), so there is
no need to check this at run-time. However, the code does need to check at run time that the array index
is bounded by the array length. (A clever just-in-time compiler may be able to eliminate this check for
some loops, such as when the array index is the same as the loop index and the loop index is bounded
by the array length.)

Of course, Java is not the only game in town. For some applications one may want the added flexibility
of supplying machine code rather than Java byte codes. One method is to simply trust that the code
provided is safe, perhaps using cryptographic techniques to verify that the code is supplied by a known
party. When executing machine code, is there any way to supplement trust with tests? There is, and the
solutions span an alphabet of acronyms.

One is SFI, or Software Fault Isolation. This inserts extra instructions into the machine code, to
check that accesses will not exceed set bounds on the memory. SFI introduces extra run-time overhead,
and the security policies it implements are cruder than those imposed by a type system. Typically, one
can restrict a whole program to access data in a particular region of memory, but not restrict accesses to
a particular array to be within bounds. SFI was developed by Wahbe, Lucco, Anderson, and Graham at
Berkeley in 1993.

Another is TAL, or Typed Assembly Language. The type system developed for lambda calculus is
flexible enough to be applied to a range of other styles of programming languages — and, remarkably, it
can even be extended to assembly language. In Java, the byte codes are annotated with types that are
checked by the verifier before the code is run. Similarly, in TAL the machine code is annotated with types
that are checked by the type checker before the code is run. The difference is that while Java byte codes
were especially designed for checking, in TAL the type system is overlayed on the machine code of the
Intel x86 architecture. (The TAL researchers display a variant of the familiar ‘Intel inside’ logo modified
to say ‘Types inside’, and their motto is ‘What do you want to type today?’.) TAL was developed by
Greg Morrisett and others at Cornell in 1998.

TAL is a refinement of TIL, or Typed Intermediate Language. The TIL project exploited types as the
basis for constructing an optimizing compiler for a functional language. The typed functional language is
translated to a lower-level typed intermediate language, which is optimized and then compiled to machine
code (or, later, TAL). Indeed, most compilers for functional languages now exploit types heavily, in a style
similar to that used for TIL. TIL was developed by Greg Morrisett and Bob Harper at Carnegie-Mellon
in 1995. Both TAL and TIL take their inspiration from the Girard-Reynolds type system mentioned
earlier, John Reynolds also being on the faculty at Carnegie-Mellon.

Finally there is PCC, or Proof Carrying Code. In TAL, as in all type systems, the types are in effect a
proof that the program satisfies certain properties. In PCC, instead of adding types to the machine code
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one adds the proofs directly. The disadvantage of this is that proofs are typically larger than types, and
proof checking is slightly harder than type checking; the advantage is that proofs can be more flexible
than types. PCC was developed by George Necula and Peter Lee at Carnegie-Mellon in 1996 (Necula
moved to Berkeley shortly thereafter).

The first application of PCC was to packet filters. A packet filter needs to be fast (servers process
a lot of packets) and trusted (it is part of the kernel). A special-purpose solution is the Berkely Packet
Filter, or BPF, a small interpreted language for packet filters built-in to the kernel of Berkeley Unix
which enforces the safety policy by run-time checks. One can avoid the overhead of interpretation by
using SFI (which adds its own run-time checks) or PCC (where the proof is checked just once, and there
is no run-time overhead). The original PCC paper presented measurements showing that SFI was four
to six times faster than BPF, and that SCC was another 25% faster that SFI. A drawback of PCC is
that it takes a while to check the proof, so SFI is faster than PCC if checking a tiny number of packets,
but PCC is faster than SFI if checking more than a dozen packet (the common case). This work won the
best paper award at OSDI 96, the Symposium on Operating System Design and Implementation.

Another application of PCC is to our old friend, Java. Instead of transmitting byte codes and using
a just-in-time compiler, with the PCC Special J system one can transmit already compiled machine code
together with a proof that the code satisfies all the properties that would normally be checked by the byte
code verifier or at run-time. Some Java users resort to the native code interface, which gives no security
guarantees but provides a way to execute machine code directly; with Special J one can execute machine
code directly while still preserving the security guarantees. Necula and Lee have founded a start-up,
Cedilla Systems, to pursue commercial possibilities for PCC, and PCC is now patent pending.

One advantage of both TAL and PCC is that the trusted computing base is smaller. Designing a
secure system is hard — a number of bugs have been spotted and corrected in the Java platform since it
was first released. If a platform for secure computing is simple and small, then it is less likely to contain
errors. In TAL, the only code that needs to be trusted is the type checker for assembly language, and
in PCC the only code that needs to be trusted is that of the type checker. In particular, the compiler
that generates the code does not need to be trusted. If the compiler contains an error, then it is likely
to generate code that does not type check (for TAL), or an incorrect proof (for PCC). Thus, TAL and
PCC, as well as enhancing security, also aid in debugging the compiler.

In rare cases, it might be that the compiler generates code that does not do what was expected, but
still typechecks or has a correct proof. Even in this case, the types or proof will guarantee that the code
cannot violate the security policy. For instance, the security policy might ensure that the code never
indexes outside the bounds of a given array, but the code might still look at the wrong array index.

What happens if a malicious user changes the code? Then the type or proof will not match the code,
and the program will not be run. What happens if a malicious user changes the code, and changes the
types or proofs to match the new code? Then the types or proofs still guarantee that the new code
cannot violate the security policy, even though the code may not behave as expected. (There is not much
difference here between a malicious user and an erroneous compiler!) The flip side of this is that neither
TAL nor PCC is a panacea. One needs to set the security policy in advance, and design the type or proof
system to enforce that policy.

TAL and PCC have attracted a great deal of interest in the research community — there is a biannual
workshop devoted to typed compilers in the style of TIL, and there is ongoing research on PCC at
Princeton, Purdue, and Yale, as well as Berkeley and Carnegie Mellon.

Both TAL and PCC work in much the same way. They were both designed by researchers in functional
languages, and they depend heavily on the logics and type systems whose roots were traced in this paper.
As it happens, they were also initiated by researchers working in the same place, Carnegie Mellon, at the
same time, just a few years ago. The similarities were recognized from the start, and research on each
has reinforced the other.

By now this should be almost completely unsurprising, since as we’ve seen types and proofs are
strikingly similar, and, in the right circumstances, can even be in precise correspondence. With Gentzen
and Curry it took thirty years for the underlying similarities to be spotted, with Girard and Reynolds
the same idea popped up at nearly the same time for very different reasons. So the only surprise with
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TAL and PCC is that the similarities were recognized from the start!
It is too early to say, but just as physics is underpinned by the work of Copernicus, Galileo, and

Newton, one day computing may be underpinned by the work of Frege, Gentzen, and Church.
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