The evolution of an OCaml programmer

Christophe Deleuze

May 23, 2008

Abstract

A few ways to describe the computation of (should | just sapfpam”?) the factorial function in OCaml. We
begin with the classicdbr loop and recursion and end with Church naturals in the lanchttailus. On the way, we
meet tail, structural, and open recursion, streams and-freie style, Peano, functors, continuation passing style
(CPS), meta-programmingal | / cc, trampolined style, reactive programming, and lineardggot necessarily in
this order, though). Inspiration came from [12], itselfpired by [2].

We start with one of the most straightforward programs ferfectorial function: as a recursive procedure, generating
a linear recursive process [1].

let rec fact n =
if n=0then 1
else n * fact (n-1)

But then we realize that OCaml also has imperative featsmesje can eliminate these costly recursive calls! Here’s
an imperative procedure generating a linear iterativegssc

let fact n =
let a=ref 1in
for i =1tondoa:="!a?* i done
la

Hey, this imperative stuff is ugly, didn’t you know that taéicursion can be as efficient as a loop? Here’s a recursive
procedure generating a linear iterative process.

let fact n =
let recf i a=if i =nthen aelsef (i+l) ((i+l)*a)
in
f o1l

The next, rather stupid, implementation could arguably éscdbed as a linear recursive process generated by an
iterative procedure. Rant: OCaml arrays have their firghel& at position 0, which is often inconvenient (remember
Pascal arrays?)

let fact n =
let a = Array. make (n+l) 1
in

for i =2tondo

a. (i) < a.(i-1) * i
done;
a.(n-1)

We've been using syntactic sugar for function declaratitets avoid this and make the lambda explicit:

let fact =
let recf i na=if i =nthen aelsef (i+l) n ((i+1)*a)
in
function n->f 0n1l

http://christophe.deleuze.free.fr/D/evolution.html May 3, 2009

or alternatively:

let fact = function n ->
let recf i a=if i =nthen aelsef (i+l) ((i+l)*a)
in
f o1l

Feeling lispy? Turn these infix operators into prefix funasigrequires even more parentheses than in Lisp!):

let fact = function n ->

let recf i a=if i =nthenacelsef ((+) i 1) ((*) ((+) i 1) a)
in

fo1l

This “if then else” expression is too Pascalish, it doespdkl mathematical enough; let's being more declarative by
using a transformational style:

let rec fact = function
| 0->1
| n->n* fact (n-1)

Oops! We forgot to use tail recursion!

let fact n =
let rec f na=mtchnwth
| 0->a
| n->f (n-1) (a*n)
in
fnil

General recursion is not the only way to go. Recursion opesatan be fun(ctional) too. Did you know you could do
so many things with fold? [8]

let rec list_fromto nm=
if n>mthen [] elsen:: (list_fromto (n+tl) m

let fact = fun n -> List.fold_right (fun n acc -> acc*n) (list_fromto 1 n) 1
But again, neithefist_fromto norfol d_right are tail-recursive.

let list fromto nm=
let rec nkl | m=
if n>mthen!| else nkl (m:l) (m1)
in
mkl [] m

let fact = fun n -> List.fold_left (fun acc n -> acc*n) 1 (list_fromto 1 n)

That’s good but hey, how useful is tail recursion if thist _from t o stuff uses linear space? Lazy lists (aka streams)
allow us to do the same thing in constant space with the vengdarmulation. Look:

let streamfromto n m=
let f i =if (nti) <= mthen Some (n+i) else None
in
Stream from f

let streamfold f i s =
let rec help acc =

try
let n = Streamnext s in
help (f acc n)
with Stream Failure -> acc
in
hel p i

let fact = fun n -> streamfold (fun acc n -> acc*n) 1 (streamfromto 1 n)
If you read Backus’ paper about FP [3], you'd probably prédewrite it in point-free stylé:

let insert unit op seq =
streamfold
(fun acc n -> op acc n)
uni t
seq

let iota = streamfromto 1

let fact =
let (/) = insert
and (@) f g x =f(g x) (* sadly, we can't use '0" as infix symbol *)
in

((/)y 1(*)) @iota
We could define the stream insert with recursion rather tisamguthe fold operator:

let insert unit op seq =
let rec help acc =
try
let n = Streamnext seq in
help (op acc n)
with StreamFailure -> acc
in
hel p unit

If we don't like OCaml built-in Stream module, it's easy tdfide streams with state-full functions. Rather than raising
an exception at stream end, we’'ll use an option type for iiseva

let streamfromto n =
let current =ref (n-1)
in
fun m() ->if lcurrent < mthen begin
incr current;
Some !current
end el se None

let streamfold f i st =
let rec help acc =
match st () with
Some n -> help (f acc n)
| None -> acc
in
help i

let fact n = streamfold (*) 1 (streamfromto 1 n)

Open recursion allows many nice things like tracing callexdending types [11, 7].

1FP’s insert operator is denoted '/’ and the unit parametgivisn by theuni t functional form (takes a function as argument and retuss it
unit if there is one.)

let ofact f n =
if n=0then 1
elsen* f (n-1)

let rec fact n = ofact fact n

Or alternatively

let rec fix f x =f (fix f) x
let fact = fix ofact

Repeat: “I should use tail recursion”...

let ofact f acc n =
if n=20 then acc
el se f (n*acc) (n-1)

let fact n =
let rec help a n =ofact help an
in
help 1 n

All these functions make use of the quite limited CPU basetype. OCaml provides exact integer arithmetic through
theBi g_i nt module:

open Big_int

let rec fact = function
0 -> zero_big_int
| n->nmult_big.int (big_int_of_int n) (fact (n-1))

Another way to get rid of this int data type is to build naturambers from scratch, as defined, for example, by Peano.
In the process we switch from general to structural recarffaus syntactically ensuring termination and making our
function total) :

type nat = Zero | Succ of nat

let rec (+) n m=
match n with
| Zero ->m
| Succ(p) ->p + (Succ m

let rec (*) nm=
match n with
| Zero -> Zero
| Succ(Zero) -> m
| Succ(p) ->m+ (p*m

let rec fact n =
match n with
| Zero -> Succ(Zero)
| Succ(p) ->n * (fact p)

(* convenience functions *)

let rec int_of peano = function
Zero ->0
| Succ(p) -> succ (int_of _peano p)

let rec peano_of int = function
0 -> Zero
| n -> Succ(peano_of int (n-1))

Tail-recursive versions are left as (easy) exercises toghder!

What about using functors? Whatever representation wearseafurals, they can be defined as a module with the
NATSIG signature defined below. Then, a functor taking a n®adfi NATSIG signature can be defined to provide a
factorial function for any NATSIG datatype.

modul e type NATSIG =
sig
type t
val zero:t
val unit:t
val mul:t->t->t
val pred:t->t
end

modul e Fact Funct (Nat: NATSIG =
struct
let rec fact n:Nat.t =
if n=Nat.zero then Nat.unit else Nat.nmul n (fact (Nat.pred n))
end

Here are examples of uses with native integers, Peano feagumé OCambi g_i nt s:

modul e NativelntNats =

struct
type t = int
let zero = 0
let unit =1

let mul =(*)
let pred n =n-1
end

modul e PeanoNats =
struct
type t = Zero | Succ of t
let zero = Zero
et unit = Succ(Zero)

let rec add n m=
match n with
| Zero ->m
| Succ(p) -> add p (Succ m

let rec mul n m=
match n with
| Zero -> Zero
| Succ(Zero) -> m
| Succ(p) ->add m(mul pnm

let pred = function Succ(n) -> n | Zero -> Zero
end

modul e BiglntNats =
struct
type t = Big_int.big_int

let zero = Big_int.zero big int

let unit = Big_int.unit_big int

let pred = Big_int.pred_big_ int

let mul = Big_int.nult _big int
end

modul e NativeFact = Fact Funct (Nativel ntNats)
modul e PeanoFact = Fact Funct (PeanoNat s)
modul e Bi gl nt Fact = Fact Funct (Bi gl nt Nat's)

In the previous examples, to make the function tail-regarsie used a secoratcumulator parameter, which in some
sense remembered the past computations (actually justréseilt).

Another way to turn a recursive function into a tail-recuesone is to useontinuation passing style (aka CPS). The
series of recursive calls actualtyild as a function the sequence of computations to be done, thathlie performed
on the final base call (for n=0).

This could be considered cheating since, although the ifumé tail-recursive, the size of the “accumulator” grows
linearly with the number of recursive calls...

let fact =
let rec f nk =
if n=0 then k 1
else f (n-1) (funr ->k (r*n))
in
function n ->f n (fun x -> x)

This is not so different from using meta-programming. Metaul [15] is a nice meta-programming extension of
OCaml. Using that, you can write a function that takes argigten as parameter and produces the code that, when
run, will compute the factorial of n... (just for fun)

let rec gfact = function
| 0->.<1>
| n->.<n* . ~(gfact (n-1)) >.

let fact n =.! gfact n
Of course, this can be made tail-recursive too! Then it lo@ky similar to the previous example using continuations:

let gfact n =
let rec f n acc =
if n=0 then acc
else f (n-1) .< n* . ~acc>
inf n.<1>

Using first class continuations, we can run our function stggtep as a synchronous process possibly among other
processes [5].

open Callcc
type "a process = Proc of ("a ->'a) | Cont of "a cont
(* Prinmitives for the process queue. Exit continuation will always be first *)

| et enqueue, dequeue =
let g =ref [] in

(fune ->q:=1!q @[e]),
(fun () -> match 'qg with
e:fiil ->qi=e:l; f (* keep exit cont at head of queue *)
| [e] ->q:=1]; € (* no nore process to run *)
let run p =

2Could someone provide me with a good reference for this?
3straight OCaml does not feature first class continuatiorisalioy extension for them exists [9]. A more robust librargaabupports
delimited continuations [13].

match p with
Proc proc -> proc ()
| Cont k -> throw k ()

(* Queue back a suspending process, dequeue and run *)

let swap_run p =
enqueue p;
run (dequeue ())

* Two functions to be used in processes. halt to terninate,
p
pause handler to suspend *)

let halt () = run (dequeue ())

| et pause_handler () =
callcc (fun k -> swap_run (Cont k))

et create process th =
Proc (fun () ->th (); halt ())

(* Dispatcher puts exit continuation in process queue, adds processes
through init_gq and runs first process. *)

et dispatcher init_q =
callcc
(fun exitk ->
enqueue (Cont exitk);
init_q();
halt ())

(* Factorial as a process *)

let fact _maker n =
create_process
(fun () ->
let rec fact n =
if n=0 then 1
el se begin
pause_handl er ();
n* fact (n-1)
end
in Printf.printf "fact=%\n" (fact n))

let fact n = dispatcher (fun () -> enqueue (fact_maker n));;

Trampolined style [6] is another way to run our function step by step concutyenith others, but without the need
for first class continuations. Instead, we'll use CPS. Thmtlies that we must use a tail recursive version of factorial
in this case.

type 'a thread = Done of "a | Doing of (unit -> "a thread)

Done v
Doi ng f

let return v
| et bounce f

(* factorial function *)

let rec fact_tramp i acc =
if i=0 then
return acc
el se

bounce (fun () -> fact tranp (i-1) (acc*i))
(* one thread schedul er *)
et rec pogostick f =
match f () with
| Done v -> v
| Doing f -> pogostick f

(* give our fact trampoline function to the schedul er *)

let fact n =
pogostick (fun () -> fact_tramp n 1)

Functional reactive programming is still another way to describe concurrent, synchronoosyputations. In reac-
tiveML [10], a factorial computing process could be writis

let rec process fact n =

pause;

if n<=1 then 1

el se
let v =run (fact (n-1)) in
n*v

In alinear logic based language [4], each bound name is required to be reéet@xactly once. This may seem odd
but ensures nice properties, e.g. avoiding the need folagarbollection. Pretending we have some “linear OCaml”
compiler, we could write the factorial this way:

let dup x = (x,x) (* dup and kill would be *)
let kill x = () (* provided by linear OCam *)

let rec fact n =
let n,n" =dup n
in
if n=0 then (kill n"; 1)
el se
let n,n" =dupn in
n * fact (n-1)

Computing with Peano numbers like we did previously is fum, Ibt's be more functional and use Church naturals
instead! Sadly, although they can be defined in OCaml, the system rejects the pred operator. Never mind, let's
quickly build* a lambda calculus interpreter!

There may be a subtle bug in the way alpha conversion is peeir Can you find it?

(* the type of lanbda terms *)
type lanbda = Var of string | Abs of string * lanbda | App of lanbda * |anbda
(* free variables int *)

let rec fvt =
match t with
| Var x -> [x]
| Abs(x,l) -> List.filter (fun e -> e<>x) (fv I)
| App(tl,t2) ->fv tl @fv t2

4] must admit it took me (much) more time than | first expected..
5Code forcbn andnor is from [14].

(* int, rename olds present in seen -- seen under |anbdas *)

let rec alpha olds seen nbt =
match t with
| Var s -> if List.mems seen then Var (s”nb) else t
| App(l1,12) -> App(al pha olds seen nb |1, alpha olds seen nb |2)
| Abs(s,l) ->
if List.mems olds then Abs(s”nb, alpha olds (s::seen) nb |)
el se Abs(s, alpha olds seen nb I)

(* body[arg/s], alpha conversion already done *)

et rec ssubst body s arg =
mat ch body with
| Var s’ -> if s=s’ then arg else Var s
| App(l11,12) -> App(ssubst |1 s arg, ssubst 12 s arg)
| Abs(o,l) ->if o=s then body el se Abs(o, ssubst | s arg)

let gen_nb =
let nb =ref 0 in function () ->incr nb; !nb

(* body[arg/s], avoiding captures *)

et subst body s arg =
let fvs = fv argin
ssubst (al pha fvs [] (string_of_int (gen_nb())) body) s arg

(* call by nane eval uation *)

let rec chnt =
match t with
| Var _ ->t
| Abs ->t
| App(el,e2) -> match cbhn el with
| Abs(x,e) -> chn (subst e x €2)
| el -> App(el’, e2)

(* normal order evaluation *)

let rec nor t =

match t with

| Var _ ->t

| Abs(x,e) -> Abs(x,nor e)

| App(el,e2) -> match cbhn el with
| Abs(x,e) -> nor (subst e x e2)
| el ->1let el'" =nor el in

App(el’’,nor e2)

(* some useful basic constructs *)

et succ = Abs("n", Abs("f", Abs("x
App(Var"t", App(App(Var"n",Var"f"),Var"x")))))

let pred = Abs("n", Abs("f", Abs("x",

App(App(App(Var"n”,

(Abs("g", Abs("h", App(Var"h", App(Var"g",Var"f")))))),
(Abs("u",Var"x"))),

(Abs("u",Var"u"))))))

let mult = Abs("n", Abs("ni', Abs("f", Abs("x",

n i
App(App(Var"n", (App(Var"nt, Var"f"))), var"x")))))

let zero = Abs("f", Abs("x", Var"x"))

let t = Abs("x", Abs("y",Var"x"))
let f = Abs("x", Abs("y",Var"y"))
let iszero = Abs("n", App(App(Var"n", Abs("x",f)), t))

let y = Abs("g", App(Abs("x", App(Var"g", App(Var"x", Var"x"))),
Abs("x", App(Var"g", App(Var"x",Var"x")))))

(* now let's build the factorial function *)

let fact =
et ofact = Abs("f", Abs("n",
App(App(App(i szero, Var"n"),
App(succ, zero)),
App(App(nul't, Var "n"),
(App(Var“f", App(pred, Var“n")))))))
in App(ofact, App(y, ofact))

(* convenience functions *)

let church_of _int n =
let rec coi n=if n=0 then Var"x" else App(Var"f", coi (n-1))
in
Abs("f", Abs("x", coi n))

exception Not aNat

let int_of _church n
let recioc nf x
match n with

Var x* -> if x=x" then 0 el se raise NotaNat
| App(Var f',r) ->if f=f" then (ioc r f x) + 1 el se raise NotaNat
| _ -> raise NotaNat
in
match n with
Abs(f, Abs(x,r)) ->iocr f x
| _ -> raise NotaNat

let fact n = int_of church (nor (App(fact,church of int n)))

All right, that’'s enough for today. Next time, we may talk abobjects, syntax extensions, MVars and a few other
nice things.

References

[1] Harold Abelson, Gerald Jay Sussman, and Julie Suss@iaucture and Interpretation of Computer Programs.
MIT Press, 1984http: //mitpress. mt. edu/ si cp/

[2] Unkown author. The evolution of a programmer. Articleriewsgroup, circa 1990t t p: / / ww. pvv. nt nu.
no/ ~steinl/vitser/evol ution. htm

[3] John Backus. Can programming be liberated from the voanhNenn style? a functional style and its algebra of
programs. Communications of the ACM, 21(8):613-641, August 1978t tp://ww. st anf ord. edu/ cl ass/
cs242/ r eadi ngs/ backus. pdf

[4] Henry G. Baker. Linear logic and permutation stacks-ftreh shall be first ACM Computer Architecture News,
22(1):34-43, March 1994.

10

[5] D. P. Friedman. Applications of continuations. Invit€dtorial, Fifteenth Annual ACM Symposium on Princi-
ples of Programming Languages, January 1988p: / / www. cs. i ndi ana. edu/ ~df ri ed/ appcont . pdf

[6] Steven E. Ganz, Daniel P. Friedman, and Mitchell Wandanipolined style. Irinternational Conference on
Functional Programming, pages 18-27, 1998t tp://citeseer.ist. psu. edu/ ganz99t r anpol i ned. ht m

[7] Jacques Garrigue. Code reuse through polymorphic marialn Workshop on Foundations of Software Engi-
neering, Sasaguri, Japan, November 2000.

[8] Graham Hutton. A tutorial on the universality and exgiesness of foldJournal of Functional Programming,
9(4):355-372, July 1999t t p: / / www. ¢s. nott . ac. uk/ ~gmh/ bi b. ht m #f ol d

[9] Xavier Leroy. OCaml-callcc: call/cc for OCaml. OCambtary. http://pauillac.inria.fr/~xleroy/
sof tware. ht m

[10] Louis Mandel and Marc Pouzet. Reactive Mitt p: // ww. reactivem . or g

[11] Bruce McAdam. Y in practical programs (extended alz$jra2001.http://citeseer.ist. psu.edu/
mcadanmsOlpractical . htm

[12] Fritz Ruehr. The evolution of a haskell programmer. Wselge, 2001http://ww. wi | | anette. edu/
~fruehr/haskel I / evol ution. htm

[13] Amr Sabry, Chung chieh Shan, and Oleg Kiselyov. Natefindited continuations in (byte-code) ocaml. OCaml
library. htt p: //oknij.org/ftp/ Conputation/Continuations. htn #can - shift

[14] Peter Sestoft. Demonstrating lambda calculus reductin The essence of computation: complexity, analysis,
transformation, pages 420—-435. Springer-Verlag New York, Inc., New York, NSA, 2002.

[15] Walid Taha et al. MetaOCaml: A compiled, type-safe, tinstiage programming language. Web pagd.p:
[[www. met aocan . or g

11

